Cargando…

Photochemical synthesis of pyrano[2,3-d]pyrimidine scaffolds using photoexcited organic dye, Na(2) eosin Y as direct hydrogen atom transfer (HAT) photocatalyst via visible light-mediated under air atmosphere

The Knoevenagel-Michael cyclocondensation of barbituric acid/1,3-dimethylbarbituric acid, malononitrile, and arylaldehyde derivatives was used to construct a multicomponent green tandem method for the metal-free synthesis of pyrano[2,3-d]pyrimidine scaffolds. At room temperature in aqueous ethanol,...

Descripción completa

Detalles Bibliográficos
Autor principal: Mohamadpour, Farzaneh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9906854/
https://www.ncbi.nlm.nih.gov/pubmed/36750909
http://dx.doi.org/10.1186/s13065-023-00912-7
Descripción
Sumario:The Knoevenagel-Michael cyclocondensation of barbituric acid/1,3-dimethylbarbituric acid, malononitrile, and arylaldehyde derivatives was used to construct a multicomponent green tandem method for the metal-free synthesis of pyrano[2,3-d]pyrimidine scaffolds. At room temperature in aqueous ethanol, photo-excited state functions generated from Na(2) eosin Y were employed as direct hydrogen atom transfer (HAT) catalysts by visible light mediated in the air atmosphere. This research looks towards expanding the use of a non-metallic organic dye that is both affordable and readily available. Because of its good yields, energy-effectiveness, high atom economy, time-saving qualities of the reaction, and operational simplicity, Na(2) eosin Y is photochemically produced with the least amount of a catalyst. As a result, various ecological and sustainable chemical properties are met. Surprisingly, such cyclization may be carried out on a gram scale, indicating the reaction's potential industrial application. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13065-023-00912-7.