Cargando…

EIF5A2 specifically regulates the transcription of aging-related genes in human neuroblastoma cells

BACKGROUND: Post-transcriptional regulation plays a critical role in controlling biological processes such as aging. Previous studies have shown that eukaryotic initiation factor 5A (EIF5A) might play a crucial role in aging. It is unknown whether EIF5A2, a second isoform of EIF5A, could impact agin...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yuwei, Peng, Li, Chen, Jing, Chen, Ling, Wu, Ying, Cheng, Mengxin, Chen, Min, Ye, Xujun, Jin, Yalei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9906866/
https://www.ncbi.nlm.nih.gov/pubmed/36750933
http://dx.doi.org/10.1186/s12877-023-03793-6
Descripción
Sumario:BACKGROUND: Post-transcriptional regulation plays a critical role in controlling biological processes such as aging. Previous studies have shown that eukaryotic initiation factor 5A (EIF5A) might play a crucial role in aging. It is unknown whether EIF5A2, a second isoform of EIF5A, could impact aging through post-transcriptional regulation. METHODS: In the present study, EIF5A2 overexpression (EIF5A2-OE) was induced in SH-SY5Y cells. RNA-seq, bioinformatics analysis and RT-qPCR validation experiments were then performed to explore the molecular mechanism of EIF5A2-mediated transcriptional regulation. Cell viability, proportion of senescent cells and the cell cycle were respectively determined by Cell Counting Kit-8, SA-β‑galactosidase and flow cytometry to evaluate the cell senescence. RESULTS: A total of 190 downregulated and 126 upregulated genes related to EIF5A2-OE were identified. Genes closely related to cellular aging processes such as unfolded protein response (UPR), cell adhesion and calcium signaling pathway were under global transcriptional regulation. Moreover, EIF5A2-OE promoted the viability of SH-SY5Y cells and reduced cell senescence in vitro. Among 30 genes with the most significant expression differences in EIF5A2-OE cells, we identified eight genes, including ASNS, ATF3, ATF4, CEBPB, DDIT3, HERPUD1, HSPA5 and XBP1, enriched in the UPR. Through EIF5A2-tanscription factors (TFs)-targets regulation network in EIF5A2-OE cells, we found three TFs, BHLHE40, RHOXF1 and TBX20, that targeted at these eight UPR-related genes. Verification test via the published database of human glial cell tissue showed only BHLHE40 and RHOXF1 were significantly associated with EIF5A2. CONCLUSIONS: Our findings suggest that EIF5A2 may alleviate cell senescence in vitro and mediate UPR-related genes via specific TFs. Thus, EIF5A2 could function as a regulator of aging via the regulation of transcription, which greatly expands the current understanding of the mechanisms of EIF5A2-mediated gene regulation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12877-023-03793-6.