Cargando…
Fully automated clinical target volume segmentation for glioblastoma radiotherapy using a deep convolutional neural network
PURPOSE: Target volume delineation is a crucial step prior to radiotherapy planning in radiotherapy for glioblastoma. This step is performed manually, which is time-consuming and prone to intra- and inter-rater variabilities. Therefore, the purpose of this study is to evaluate a deep convolutional n...
Autores principales: | Sadeghi, Sogand, Farzin, Mostafa, Gholami, Somayeh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Termedia Publishing House
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907163/ https://www.ncbi.nlm.nih.gov/pubmed/36819221 http://dx.doi.org/10.5114/pjr.2023.124434 |
Ejemplares similares
-
Fully Automated Segmentation of Lower Extremity Deep Vein Thrombosis Using Convolutional Neural Network
por: Huang, Chen, et al.
Publicado: (2019) -
Fully automatic wound segmentation with deep convolutional neural networks
por: Wang, Chuanbo, et al.
Publicado: (2020) -
Fully automated condyle segmentation using 3D convolutional neural networks
por: Jha, Nayansi, et al.
Publicado: (2022) -
Fully automated segmentation of clinical target volume in cervical cancer from magnetic resonance imaging with convolutional neural network
por: Zabihollahy, Fatemeh, et al.
Publicado: (2022) -
Polyp Segmentation with Fully Convolutional Deep Neural Networks—Extended Evaluation Study †
por: Guo, Yunbo, et al.
Publicado: (2020)