Cargando…

Metals to combat antimicrobial resistance

Bacteria, similar to most organisms, have a love–hate relationship with metals: a specific metal may be essential for survival yet toxic in certain forms and concentrations. Metal ions have a long history of antimicrobial activity and have received increasing attention in recent years owing to the r...

Descripción completa

Detalles Bibliográficos
Autores principales: Frei, Angelo, Verderosa, Anthony D., Elliott, Alysha G., Zuegg, Johannes, Blaskovich, Mark A. T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907218/
https://www.ncbi.nlm.nih.gov/pubmed/37117903
http://dx.doi.org/10.1038/s41570-023-00463-4
Descripción
Sumario:Bacteria, similar to most organisms, have a love–hate relationship with metals: a specific metal may be essential for survival yet toxic in certain forms and concentrations. Metal ions have a long history of antimicrobial activity and have received increasing attention in recent years owing to the rise of antimicrobial resistance. The search for antibacterial agents now encompasses metal ions, nanoparticles and metal complexes with antimicrobial activity (‘metalloantibiotics’). Although yet to be advanced to the clinic, metalloantibiotics are a vast and underexplored group of compounds that could lead to a much-needed new class of antibiotics. This Review summarizes recent developments in this growing field, focusing on advances in the development of metalloantibiotics, in particular, those for which the mechanism of action has been investigated. We also provide an overview of alternative uses of metal complexes to combat bacterial infections, including antimicrobial photodynamic therapy and radionuclide diagnosis of bacterial infections. [Image: see text]