Cargando…
Binding peptide generation for MHC Class I proteins with deep reinforcement learning
MOTIVATION: MHC Class I protein plays an important role in immunotherapy by presenting immunogenic peptides to anti-tumor immune cells. The repertoires of peptides for various MHC Class I proteins are distinct, which can be reflected by their diverse binding motifs. To characterize binding motifs fo...
Autores principales: | Chen, Ziqi, Zhang, Baoyi, Guo, Hongyu, Emani, Prashant, Clancy, Trevor, Jiang, Chongming, Gerstein, Mark, Ning, Xia, Cheng, Chao, Min, Martin Renqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907221/ https://www.ncbi.nlm.nih.gov/pubmed/36692135 http://dx.doi.org/10.1093/bioinformatics/btad055 |
Ejemplares similares
-
Ranking-Based Convolutional Neural Network Models for Peptide-MHC Class I Binding Prediction
por: Chen, Ziqi, et al.
Publicado: (2021) -
Motifs and supermotifs for MHC class II binding peptides
Publicado: (1995) -
Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction
por: Han, Youngmahn, et al.
Publicado: (2017) -
Prediction of MHC class I binding peptides, using SVMHC
por: Dönnes, Pierre, et al.
Publicado: (2002) -
MHCAttnNet: predicting MHC-peptide bindings for MHC alleles classes I and II using an attention-based deep neural model
por: Venkatesh, Gopalakrishnan, et al.
Publicado: (2020)