Cargando…

How to optimally sample a sequence for rapid analysis

MOTIVATION: We face an increasing flood of genetic sequence data, from diverse sources, requiring rapid computational analysis. Rapid analysis can be achieved by sampling a subset of positions in each sequence. Previous sequence-sampling methods, such as minimizers, syncmers and minimally overlappin...

Descripción completa

Detalles Bibliográficos
Autores principales: Frith, Martin C, Shaw, Jim, Spouge, John L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907223/
https://www.ncbi.nlm.nih.gov/pubmed/36702468
http://dx.doi.org/10.1093/bioinformatics/btad057
Descripción
Sumario:MOTIVATION: We face an increasing flood of genetic sequence data, from diverse sources, requiring rapid computational analysis. Rapid analysis can be achieved by sampling a subset of positions in each sequence. Previous sequence-sampling methods, such as minimizers, syncmers and minimally overlapping words, were developed by heuristic intuition, and are not optimal. RESULTS: We present a sequence-sampling approach that provably optimizes sensitivity for a whole class of sequence comparison methods, for randomly evolving sequences. It is likely near-optimal for a wide range of alignment-based and alignment-free analyses. For real biological DNA, it increases specificity by avoiding simple repeats. Our approach generalizes universal hitting sets (which guarantee to sample a sequence at least once) and polar sets (which guarantee to sample a sequence at most once). This helps us understand how to do rapid sequence analysis as accurately as possible. AVAILABILITY AND IMPLEMENTATION: Source code is freely available at https://gitlab.com/mcfrith/noverlap. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.