Cargando…
Growing of Artificial Lignin on Cellulose Ferulate Thin Films
[Image: see text] Thin films of cellulose ferulate were designed to study the formation of dehydrogenation polymers (DHPs) on anchor groups of the surface. Trimethylsilyl (TMS) cellulose ferulate with degree of substitution values of 0.35 (ferulate) and 2.53 (TMS) was synthesized by sophisticated po...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907350/ https://www.ncbi.nlm.nih.gov/pubmed/35438964 http://dx.doi.org/10.1021/acs.biomac.2c00096 |
Sumario: | [Image: see text] Thin films of cellulose ferulate were designed to study the formation of dehydrogenation polymers (DHPs) on anchor groups of the surface. Trimethylsilyl (TMS) cellulose ferulate with degree of substitution values of 0.35 (ferulate) and 2.53 (TMS) was synthesized by sophisticated polysaccharide chemistry applying the Mitsunobu reaction. The biopolymer derivative was spin-coated into thin films to yield ferulate moieties on a smooth cellulose surface. Dehydrogenative polymerization of coniferyl alcohol was performed in a Quartz crystal microbalance with a dissipation monitoring device in the presence of H(2)O(2) and adsorbed horseradish peroxidase. The amount of DHP formed on the surface was found to be independent of the base layer thickness from 14 to 75 nm. Pyrolysis-GC-MS measurements of the DHP revealed β-O-4 and β-5 linkages. Mimicking lignification of plant cell walls on highly defined model films enables reproducible investigations of structure–property relationships. |
---|