Cargando…
Two-dimensional BiTeI as a novel perovskite additive for printable perovskite solar cells
Hybrid organic–inorganic perovskite solar cells (PSCs) are attractive printable, flexible, and cost-effective optoelectronic devices constituting an alternative technology to conventional Si-based ones. The incorporation of low-dimensional materials, such as two-dimensional (2D) materials, into the...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907396/ https://www.ncbi.nlm.nih.gov/pubmed/36776412 http://dx.doi.org/10.1039/d2se01109c |
_version_ | 1784884166899269632 |
---|---|
author | Tsikritzis, Dimitris Chatzimanolis, Konstantinos Tzoganakis, Nikolaos Bellani, Sebastiano Zappia, Marilena Isabella Bianca, Gabriele Curreli, Nicola Buha, Joka Kriegel, Ilka Antonatos, Nikolas Sofer, Zdeněk Krassas, Miron Rogdakis, Konstantinos Bonaccorso, Francesco Kymakis, Emmanuel |
author_facet | Tsikritzis, Dimitris Chatzimanolis, Konstantinos Tzoganakis, Nikolaos Bellani, Sebastiano Zappia, Marilena Isabella Bianca, Gabriele Curreli, Nicola Buha, Joka Kriegel, Ilka Antonatos, Nikolas Sofer, Zdeněk Krassas, Miron Rogdakis, Konstantinos Bonaccorso, Francesco Kymakis, Emmanuel |
author_sort | Tsikritzis, Dimitris |
collection | PubMed |
description | Hybrid organic–inorganic perovskite solar cells (PSCs) are attractive printable, flexible, and cost-effective optoelectronic devices constituting an alternative technology to conventional Si-based ones. The incorporation of low-dimensional materials, such as two-dimensional (2D) materials, into the PSC structure is a promising route for interfacial and bulk perovskite engineering, paving the way for improved power conversion efficiency (PCE) and long-term stability. In this work, we investigate the incorporation of 2D bismuth telluride iodide (BiTeI) flakes as additives in the perovskite active layer, demonstrating their role in tuning the interfacial energy-level alignment for optimum device performance. By varying the concentration of BiTeI flakes in the perovskite precursor solution between 0.008 mg mL(−1) and 0.1 mg mL(−1), a downward shift in the energy levels of the perovskite results in an optimal alignment of the energy levels of the materials across the cell structure, as supported by device simulations. Thus, the cell fill factor (FF) increases with additive concentration, reaching values greater than 82%, although the suppression of open circuit voltage (V(oc)) is reported beyond an additive concentration threshold of 0.03 mg mL(−1). The most performant devices delivered a PCE of 18.3%, with an average PCE showing a +8% increase compared to the reference devices. This work demonstrates the potential of 2D-material-based additives for the engineering of PSCs via energy level optimization at perovskite/charge transporting layer interfaces. |
format | Online Article Text |
id | pubmed-9907396 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-99073962023-02-08 Two-dimensional BiTeI as a novel perovskite additive for printable perovskite solar cells Tsikritzis, Dimitris Chatzimanolis, Konstantinos Tzoganakis, Nikolaos Bellani, Sebastiano Zappia, Marilena Isabella Bianca, Gabriele Curreli, Nicola Buha, Joka Kriegel, Ilka Antonatos, Nikolas Sofer, Zdeněk Krassas, Miron Rogdakis, Konstantinos Bonaccorso, Francesco Kymakis, Emmanuel Sustain Energy Fuels Chemistry Hybrid organic–inorganic perovskite solar cells (PSCs) are attractive printable, flexible, and cost-effective optoelectronic devices constituting an alternative technology to conventional Si-based ones. The incorporation of low-dimensional materials, such as two-dimensional (2D) materials, into the PSC structure is a promising route for interfacial and bulk perovskite engineering, paving the way for improved power conversion efficiency (PCE) and long-term stability. In this work, we investigate the incorporation of 2D bismuth telluride iodide (BiTeI) flakes as additives in the perovskite active layer, demonstrating their role in tuning the interfacial energy-level alignment for optimum device performance. By varying the concentration of BiTeI flakes in the perovskite precursor solution between 0.008 mg mL(−1) and 0.1 mg mL(−1), a downward shift in the energy levels of the perovskite results in an optimal alignment of the energy levels of the materials across the cell structure, as supported by device simulations. Thus, the cell fill factor (FF) increases with additive concentration, reaching values greater than 82%, although the suppression of open circuit voltage (V(oc)) is reported beyond an additive concentration threshold of 0.03 mg mL(−1). The most performant devices delivered a PCE of 18.3%, with an average PCE showing a +8% increase compared to the reference devices. This work demonstrates the potential of 2D-material-based additives for the engineering of PSCs via energy level optimization at perovskite/charge transporting layer interfaces. The Royal Society of Chemistry 2022-10-24 /pmc/articles/PMC9907396/ /pubmed/36776412 http://dx.doi.org/10.1039/d2se01109c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Tsikritzis, Dimitris Chatzimanolis, Konstantinos Tzoganakis, Nikolaos Bellani, Sebastiano Zappia, Marilena Isabella Bianca, Gabriele Curreli, Nicola Buha, Joka Kriegel, Ilka Antonatos, Nikolas Sofer, Zdeněk Krassas, Miron Rogdakis, Konstantinos Bonaccorso, Francesco Kymakis, Emmanuel Two-dimensional BiTeI as a novel perovskite additive for printable perovskite solar cells |
title | Two-dimensional BiTeI as a novel perovskite additive for printable perovskite solar cells |
title_full | Two-dimensional BiTeI as a novel perovskite additive for printable perovskite solar cells |
title_fullStr | Two-dimensional BiTeI as a novel perovskite additive for printable perovskite solar cells |
title_full_unstemmed | Two-dimensional BiTeI as a novel perovskite additive for printable perovskite solar cells |
title_short | Two-dimensional BiTeI as a novel perovskite additive for printable perovskite solar cells |
title_sort | two-dimensional bitei as a novel perovskite additive for printable perovskite solar cells |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907396/ https://www.ncbi.nlm.nih.gov/pubmed/36776412 http://dx.doi.org/10.1039/d2se01109c |
work_keys_str_mv | AT tsikritzisdimitris twodimensionalbiteiasanovelperovskiteadditiveforprintableperovskitesolarcells AT chatzimanoliskonstantinos twodimensionalbiteiasanovelperovskiteadditiveforprintableperovskitesolarcells AT tzoganakisnikolaos twodimensionalbiteiasanovelperovskiteadditiveforprintableperovskitesolarcells AT bellanisebastiano twodimensionalbiteiasanovelperovskiteadditiveforprintableperovskitesolarcells AT zappiamarilenaisabella twodimensionalbiteiasanovelperovskiteadditiveforprintableperovskitesolarcells AT biancagabriele twodimensionalbiteiasanovelperovskiteadditiveforprintableperovskitesolarcells AT currelinicola twodimensionalbiteiasanovelperovskiteadditiveforprintableperovskitesolarcells AT buhajoka twodimensionalbiteiasanovelperovskiteadditiveforprintableperovskitesolarcells AT kriegelilka twodimensionalbiteiasanovelperovskiteadditiveforprintableperovskitesolarcells AT antonatosnikolas twodimensionalbiteiasanovelperovskiteadditiveforprintableperovskitesolarcells AT soferzdenek twodimensionalbiteiasanovelperovskiteadditiveforprintableperovskitesolarcells AT krassasmiron twodimensionalbiteiasanovelperovskiteadditiveforprintableperovskitesolarcells AT rogdakiskonstantinos twodimensionalbiteiasanovelperovskiteadditiveforprintableperovskitesolarcells AT bonaccorsofrancesco twodimensionalbiteiasanovelperovskiteadditiveforprintableperovskitesolarcells AT kymakisemmanuel twodimensionalbiteiasanovelperovskiteadditiveforprintableperovskitesolarcells |