Cargando…

Preliminary investigation of the diagnosis and gene function of deep learning PTPN11 gene mutation syndrome deafness

Syndromic deafness caused by PTPN11 gene mutation has gradually come into the public’s view. In the past, many people did not understand its application mechanism and role and only focused on non-syndromic deafness, so the research on syndromic deafness is not in-depth and there is a large degree of...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Xionghui, Huang, Min, Huang, Weiqing, Zhao, Sijun, Xie, Jiang, Liu, Guangliang, Chang, Shuting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907458/
https://www.ncbi.nlm.nih.gov/pubmed/36760995
http://dx.doi.org/10.3389/fgene.2023.1113095
_version_ 1784884177484644352
author Wu, Xionghui
Huang, Min
Huang, Weiqing
Zhao, Sijun
Xie, Jiang
Liu, Guangliang
Chang, Shuting
author_facet Wu, Xionghui
Huang, Min
Huang, Weiqing
Zhao, Sijun
Xie, Jiang
Liu, Guangliang
Chang, Shuting
author_sort Wu, Xionghui
collection PubMed
description Syndromic deafness caused by PTPN11 gene mutation has gradually come into the public’s view. In the past, many people did not understand its application mechanism and role and only focused on non-syndromic deafness, so the research on syndromic deafness is not in-depth and there is a large degree of lack of research in this area. In order to let the public know more about the diagnosis and gene function of deafness caused by PTPN11 gene mutation syndrome, this paper used deep learning technology to study the diagnosis and gene function of deafness caused by syndrome with the concept of intelligent medical treatment, and finally drew a feasible conclusion. This paper provided a theoretical and practical basis for the diagnosis of deafness caused by PTPN11 gene mutation syndrome and the study of gene function. This paper made a retrospective analysis of the clinical data of 85 deaf children who visited Hunan Children’s Hospital,P.R. China from January 2020 to December 2021. The conclusion were as follows: Children aged 1–6 years old had multiple syndrome deafness, while children under 1 year old and children aged 6–12 years old had relatively low probability of complex deafness; girls were not easy to have comprehensive deafness, but there was no specific basis to prove that the occurrence of comprehensive deafness was necessarily related to gender; the hearing loss of patients with Noonan Syndrome was mainly characterized by moderate and severe damage and abnormal inner ear and auditory nerve; most of the mutation genes in children were located in Exon1 and Exon3, with a total probability of 57.65%. In the course of the experiment, it was found that deep learning was effective in the diagnosis of deafness with PTPN11 gene mutation syndrome. This technology could be applied to medical diagnosis to facilitate the diagnosis and treatment of more patients with deafness with syndrome. Intelligent medical treatment was also becoming a hot topic nowadays. By using this concept to analyze and study the pathological characteristics of deafness caused by PTPN11 gene mutation syndrome, it not only promoted patients to find diseases in time, but also helped doctors to diagnose and treat such diseases, which was of great significance to patients and doctors. The study of PTPN11 gene mutation syndrome deafness was also of great significance in genetics. The analysis of its genes not only enriched the gene pool, but also provided reference for future research.
format Online
Article
Text
id pubmed-9907458
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-99074582023-02-08 Preliminary investigation of the diagnosis and gene function of deep learning PTPN11 gene mutation syndrome deafness Wu, Xionghui Huang, Min Huang, Weiqing Zhao, Sijun Xie, Jiang Liu, Guangliang Chang, Shuting Front Genet Genetics Syndromic deafness caused by PTPN11 gene mutation has gradually come into the public’s view. In the past, many people did not understand its application mechanism and role and only focused on non-syndromic deafness, so the research on syndromic deafness is not in-depth and there is a large degree of lack of research in this area. In order to let the public know more about the diagnosis and gene function of deafness caused by PTPN11 gene mutation syndrome, this paper used deep learning technology to study the diagnosis and gene function of deafness caused by syndrome with the concept of intelligent medical treatment, and finally drew a feasible conclusion. This paper provided a theoretical and practical basis for the diagnosis of deafness caused by PTPN11 gene mutation syndrome and the study of gene function. This paper made a retrospective analysis of the clinical data of 85 deaf children who visited Hunan Children’s Hospital,P.R. China from January 2020 to December 2021. The conclusion were as follows: Children aged 1–6 years old had multiple syndrome deafness, while children under 1 year old and children aged 6–12 years old had relatively low probability of complex deafness; girls were not easy to have comprehensive deafness, but there was no specific basis to prove that the occurrence of comprehensive deafness was necessarily related to gender; the hearing loss of patients with Noonan Syndrome was mainly characterized by moderate and severe damage and abnormal inner ear and auditory nerve; most of the mutation genes in children were located in Exon1 and Exon3, with a total probability of 57.65%. In the course of the experiment, it was found that deep learning was effective in the diagnosis of deafness with PTPN11 gene mutation syndrome. This technology could be applied to medical diagnosis to facilitate the diagnosis and treatment of more patients with deafness with syndrome. Intelligent medical treatment was also becoming a hot topic nowadays. By using this concept to analyze and study the pathological characteristics of deafness caused by PTPN11 gene mutation syndrome, it not only promoted patients to find diseases in time, but also helped doctors to diagnose and treat such diseases, which was of great significance to patients and doctors. The study of PTPN11 gene mutation syndrome deafness was also of great significance in genetics. The analysis of its genes not only enriched the gene pool, but also provided reference for future research. Frontiers Media S.A. 2023-01-25 /pmc/articles/PMC9907458/ /pubmed/36760995 http://dx.doi.org/10.3389/fgene.2023.1113095 Text en Copyright © 2023 Wu, Huang, Huang, Zhao, Xie, Liu and Chang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Genetics
Wu, Xionghui
Huang, Min
Huang, Weiqing
Zhao, Sijun
Xie, Jiang
Liu, Guangliang
Chang, Shuting
Preliminary investigation of the diagnosis and gene function of deep learning PTPN11 gene mutation syndrome deafness
title Preliminary investigation of the diagnosis and gene function of deep learning PTPN11 gene mutation syndrome deafness
title_full Preliminary investigation of the diagnosis and gene function of deep learning PTPN11 gene mutation syndrome deafness
title_fullStr Preliminary investigation of the diagnosis and gene function of deep learning PTPN11 gene mutation syndrome deafness
title_full_unstemmed Preliminary investigation of the diagnosis and gene function of deep learning PTPN11 gene mutation syndrome deafness
title_short Preliminary investigation of the diagnosis and gene function of deep learning PTPN11 gene mutation syndrome deafness
title_sort preliminary investigation of the diagnosis and gene function of deep learning ptpn11 gene mutation syndrome deafness
topic Genetics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907458/
https://www.ncbi.nlm.nih.gov/pubmed/36760995
http://dx.doi.org/10.3389/fgene.2023.1113095
work_keys_str_mv AT wuxionghui preliminaryinvestigationofthediagnosisandgenefunctionofdeeplearningptpn11genemutationsyndromedeafness
AT huangmin preliminaryinvestigationofthediagnosisandgenefunctionofdeeplearningptpn11genemutationsyndromedeafness
AT huangweiqing preliminaryinvestigationofthediagnosisandgenefunctionofdeeplearningptpn11genemutationsyndromedeafness
AT zhaosijun preliminaryinvestigationofthediagnosisandgenefunctionofdeeplearningptpn11genemutationsyndromedeafness
AT xiejiang preliminaryinvestigationofthediagnosisandgenefunctionofdeeplearningptpn11genemutationsyndromedeafness
AT liuguangliang preliminaryinvestigationofthediagnosisandgenefunctionofdeeplearningptpn11genemutationsyndromedeafness
AT changshuting preliminaryinvestigationofthediagnosisandgenefunctionofdeeplearningptpn11genemutationsyndromedeafness