Cargando…

The virtual microbiome: A computational framework to evaluate microbiome analyses

Microbiomes have been the focus of a substantial research effort in the last decades. The composition of microbial populations is normally determined by comparing DNA sequences sampled from those populations with the sequences stored in genomic databases. Therefore, the amount of information availab...

Descripción completa

Detalles Bibliográficos
Autores principales: Serrano-Antón, Belén, Rodríguez-Ventura, Francisco, Colomer-Vidal, Pere, Cigliano, Riccardo Aiese, Arias, Clemente F., Bertocchini, Federica
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907852/
https://www.ncbi.nlm.nih.gov/pubmed/36753469
http://dx.doi.org/10.1371/journal.pone.0280391
_version_ 1784884258282668032
author Serrano-Antón, Belén
Rodríguez-Ventura, Francisco
Colomer-Vidal, Pere
Cigliano, Riccardo Aiese
Arias, Clemente F.
Bertocchini, Federica
author_facet Serrano-Antón, Belén
Rodríguez-Ventura, Francisco
Colomer-Vidal, Pere
Cigliano, Riccardo Aiese
Arias, Clemente F.
Bertocchini, Federica
author_sort Serrano-Antón, Belén
collection PubMed
description Microbiomes have been the focus of a substantial research effort in the last decades. The composition of microbial populations is normally determined by comparing DNA sequences sampled from those populations with the sequences stored in genomic databases. Therefore, the amount of information available in databanks should be expected to constrain the accuracy of microbiome analyses. Albeit normally ignored in microbiome studies, this constraint could severely compromise the reliability of microbiome data. To test this hypothesis, we generated virtual bacterial populations that exhibit the ecological structure of real-world microbiomes. Confronting the analyses of virtual microbiomes with their original composition revealed critical issues in the current approach to characterizing microbiomes, issues that were empirically confirmed by analyzing the microbiome of Galleria mellonella larvae. To reduce the uncertainty of microbiome data, the effort in the field must be channeled towards significantly increasing the amount of available genomic information and optimizing the use of this information.
format Online
Article
Text
id pubmed-9907852
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-99078522023-02-08 The virtual microbiome: A computational framework to evaluate microbiome analyses Serrano-Antón, Belén Rodríguez-Ventura, Francisco Colomer-Vidal, Pere Cigliano, Riccardo Aiese Arias, Clemente F. Bertocchini, Federica PLoS One Research Article Microbiomes have been the focus of a substantial research effort in the last decades. The composition of microbial populations is normally determined by comparing DNA sequences sampled from those populations with the sequences stored in genomic databases. Therefore, the amount of information available in databanks should be expected to constrain the accuracy of microbiome analyses. Albeit normally ignored in microbiome studies, this constraint could severely compromise the reliability of microbiome data. To test this hypothesis, we generated virtual bacterial populations that exhibit the ecological structure of real-world microbiomes. Confronting the analyses of virtual microbiomes with their original composition revealed critical issues in the current approach to characterizing microbiomes, issues that were empirically confirmed by analyzing the microbiome of Galleria mellonella larvae. To reduce the uncertainty of microbiome data, the effort in the field must be channeled towards significantly increasing the amount of available genomic information and optimizing the use of this information. Public Library of Science 2023-02-08 /pmc/articles/PMC9907852/ /pubmed/36753469 http://dx.doi.org/10.1371/journal.pone.0280391 Text en © 2023 Serrano-Antón et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Serrano-Antón, Belén
Rodríguez-Ventura, Francisco
Colomer-Vidal, Pere
Cigliano, Riccardo Aiese
Arias, Clemente F.
Bertocchini, Federica
The virtual microbiome: A computational framework to evaluate microbiome analyses
title The virtual microbiome: A computational framework to evaluate microbiome analyses
title_full The virtual microbiome: A computational framework to evaluate microbiome analyses
title_fullStr The virtual microbiome: A computational framework to evaluate microbiome analyses
title_full_unstemmed The virtual microbiome: A computational framework to evaluate microbiome analyses
title_short The virtual microbiome: A computational framework to evaluate microbiome analyses
title_sort virtual microbiome: a computational framework to evaluate microbiome analyses
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907852/
https://www.ncbi.nlm.nih.gov/pubmed/36753469
http://dx.doi.org/10.1371/journal.pone.0280391
work_keys_str_mv AT serranoantonbelen thevirtualmicrobiomeacomputationalframeworktoevaluatemicrobiomeanalyses
AT rodriguezventurafrancisco thevirtualmicrobiomeacomputationalframeworktoevaluatemicrobiomeanalyses
AT colomervidalpere thevirtualmicrobiomeacomputationalframeworktoevaluatemicrobiomeanalyses
AT ciglianoriccardoaiese thevirtualmicrobiomeacomputationalframeworktoevaluatemicrobiomeanalyses
AT ariasclementef thevirtualmicrobiomeacomputationalframeworktoevaluatemicrobiomeanalyses
AT bertocchinifederica thevirtualmicrobiomeacomputationalframeworktoevaluatemicrobiomeanalyses
AT serranoantonbelen virtualmicrobiomeacomputationalframeworktoevaluatemicrobiomeanalyses
AT rodriguezventurafrancisco virtualmicrobiomeacomputationalframeworktoevaluatemicrobiomeanalyses
AT colomervidalpere virtualmicrobiomeacomputationalframeworktoevaluatemicrobiomeanalyses
AT ciglianoriccardoaiese virtualmicrobiomeacomputationalframeworktoevaluatemicrobiomeanalyses
AT ariasclementef virtualmicrobiomeacomputationalframeworktoevaluatemicrobiomeanalyses
AT bertocchinifederica virtualmicrobiomeacomputationalframeworktoevaluatemicrobiomeanalyses