Cargando…
A prefix and attention map discrimination fusion guided attention for biomedical named entity recognition
BACKGROUND: The biomedical literature is growing rapidly, and it is increasingly important to extract meaningful information from the vast amount of literature. Biomedical named entity recognition (BioNER) is one of the key and fundamental tasks in biomedical text mining. It also acts as a primitive...
Autores principales: | Guan, Zhengyi, Zhou, Xiaobing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907889/ https://www.ncbi.nlm.nih.gov/pubmed/36755230 http://dx.doi.org/10.1186/s12859-023-05172-9 |
Ejemplares similares
-
Biomedical named entity recognition with the combined feature attention and fully-shared multi-task learning
por: Zhang, Zhiyu, et al.
Publicado: (2022) -
Biomedical named entity recognition based on fusion multi-features embedding
por: Li, Meijing, et al.
Publicado: (2023) -
Various criteria in the evaluation of biomedical named entity recognition
por: Tsai, Richard Tzong-Han, et al.
Publicado: (2006) -
Comparison of named entity recognition methodologies in biomedical documents
por: Song, Hye-Jeong, et al.
Publicado: (2018) -
Towards reliable named entity recognition in the biomedical domain
por: Giorgi, John M, et al.
Publicado: (2020)