Cargando…

Compact holographic sound fields enable rapid one-step assembly of matter in 3D

Acoustic waves exert forces when they interact with matter. Shaping ultrasound fields precisely in 3D thus allows control over the force landscape and should permit particulates to fall into place to potentially form whole 3D objects in “one shot.” This is promising for rapid prototyping, most notab...

Descripción completa

Detalles Bibliográficos
Autores principales: Melde, Kai, Kremer, Heiner, Shi, Minghui, Seneca, Senne, Frey, Christoph, Platzman, Ilia, Degel, Christian, Schmitt, Daniel, Schölkopf, Bernhard, Fischer, Peer
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908023/
https://www.ncbi.nlm.nih.gov/pubmed/36753553
http://dx.doi.org/10.1126/sciadv.adf6182
_version_ 1784884297578053632
author Melde, Kai
Kremer, Heiner
Shi, Minghui
Seneca, Senne
Frey, Christoph
Platzman, Ilia
Degel, Christian
Schmitt, Daniel
Schölkopf, Bernhard
Fischer, Peer
author_facet Melde, Kai
Kremer, Heiner
Shi, Minghui
Seneca, Senne
Frey, Christoph
Platzman, Ilia
Degel, Christian
Schmitt, Daniel
Schölkopf, Bernhard
Fischer, Peer
author_sort Melde, Kai
collection PubMed
description Acoustic waves exert forces when they interact with matter. Shaping ultrasound fields precisely in 3D thus allows control over the force landscape and should permit particulates to fall into place to potentially form whole 3D objects in “one shot.” This is promising for rapid prototyping, most notably biofabrication, since conventional methods are typically slow and apply mechanical or chemical stress on biological cells. Here, we realize the generation of compact holographic ultrasound fields and demonstrate the one-step assembly of matter using acoustic forces. We combine multiple holographic fields that drive the contactless assembly of solid microparticles, hydrogel beads, and biological cells inside standard labware. The structures can be fixed via gelation of the surrounding medium. In contrast to previous work, this approach handles matter with positive acoustic contrast and does not require opposing waves, supporting surfaces or scaffolds. We envision promising applications of 3D holographic ultrasound fields in tissue engineering and additive manufacturing.
format Online
Article
Text
id pubmed-9908023
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-99080232023-02-09 Compact holographic sound fields enable rapid one-step assembly of matter in 3D Melde, Kai Kremer, Heiner Shi, Minghui Seneca, Senne Frey, Christoph Platzman, Ilia Degel, Christian Schmitt, Daniel Schölkopf, Bernhard Fischer, Peer Sci Adv Physical and Materials Sciences Acoustic waves exert forces when they interact with matter. Shaping ultrasound fields precisely in 3D thus allows control over the force landscape and should permit particulates to fall into place to potentially form whole 3D objects in “one shot.” This is promising for rapid prototyping, most notably biofabrication, since conventional methods are typically slow and apply mechanical or chemical stress on biological cells. Here, we realize the generation of compact holographic ultrasound fields and demonstrate the one-step assembly of matter using acoustic forces. We combine multiple holographic fields that drive the contactless assembly of solid microparticles, hydrogel beads, and biological cells inside standard labware. The structures can be fixed via gelation of the surrounding medium. In contrast to previous work, this approach handles matter with positive acoustic contrast and does not require opposing waves, supporting surfaces or scaffolds. We envision promising applications of 3D holographic ultrasound fields in tissue engineering and additive manufacturing. American Association for the Advancement of Science 2023-02-08 /pmc/articles/PMC9908023/ /pubmed/36753553 http://dx.doi.org/10.1126/sciadv.adf6182 Text en Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Physical and Materials Sciences
Melde, Kai
Kremer, Heiner
Shi, Minghui
Seneca, Senne
Frey, Christoph
Platzman, Ilia
Degel, Christian
Schmitt, Daniel
Schölkopf, Bernhard
Fischer, Peer
Compact holographic sound fields enable rapid one-step assembly of matter in 3D
title Compact holographic sound fields enable rapid one-step assembly of matter in 3D
title_full Compact holographic sound fields enable rapid one-step assembly of matter in 3D
title_fullStr Compact holographic sound fields enable rapid one-step assembly of matter in 3D
title_full_unstemmed Compact holographic sound fields enable rapid one-step assembly of matter in 3D
title_short Compact holographic sound fields enable rapid one-step assembly of matter in 3D
title_sort compact holographic sound fields enable rapid one-step assembly of matter in 3d
topic Physical and Materials Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908023/
https://www.ncbi.nlm.nih.gov/pubmed/36753553
http://dx.doi.org/10.1126/sciadv.adf6182
work_keys_str_mv AT meldekai compactholographicsoundfieldsenablerapidonestepassemblyofmatterin3d
AT kremerheiner compactholographicsoundfieldsenablerapidonestepassemblyofmatterin3d
AT shiminghui compactholographicsoundfieldsenablerapidonestepassemblyofmatterin3d
AT senecasenne compactholographicsoundfieldsenablerapidonestepassemblyofmatterin3d
AT freychristoph compactholographicsoundfieldsenablerapidonestepassemblyofmatterin3d
AT platzmanilia compactholographicsoundfieldsenablerapidonestepassemblyofmatterin3d
AT degelchristian compactholographicsoundfieldsenablerapidonestepassemblyofmatterin3d
AT schmittdaniel compactholographicsoundfieldsenablerapidonestepassemblyofmatterin3d
AT scholkopfbernhard compactholographicsoundfieldsenablerapidonestepassemblyofmatterin3d
AT fischerpeer compactholographicsoundfieldsenablerapidonestepassemblyofmatterin3d