Cargando…
Hyper-Mol: Molecular Representation Learning via Fingerprint-Based Hypergraph
With the development of artificial intelligence (AI) in the field of drug design and discovery, learning informative representations of molecules is becoming crucial for those AI-driven tasks. In recent years, the graph neural networks (GNNs) have emerged as a preferred choice of deep learning archi...
Autores principales: | Cui, Shicheng, Li, Qianmu, Li, Deqiang, Lian, Zhichao, Hou, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908364/ https://www.ncbi.nlm.nih.gov/pubmed/36776618 http://dx.doi.org/10.1155/2023/3756102 |
Ejemplares similares
-
Non-uniform Evolving Hypergraphs and Weighted Evolving Hypergraphs
por: Guo, Jin-Li, et al.
Publicado: (2016) -
Clustering via hypergraph modularity
por: Kamiński, Bogumił, et al.
Publicado: (2019) -
Skill ranking of researchers via hypergraph
por: Kong, Xiangjie, et al.
Publicado: (2019) -
Embedding of Molecular Structure Using Molecular Hypergraph Variational Autoencoder with Metric Learning
por: Koge, Daiki, et al.
Publicado: (2020) -
Hypergraph Seminar
por: Berge, Claude, et al.
Publicado: (1974)