Cargando…
Mesolimbic dopamine adapts the rate of learning from action
Recent success in training artificial agents and robots derives from a combination of direct learning of behavioural policies and indirect learning through value functions(1–3). Policy learning and value learning use distinct algorithms that optimize behavioural performance and reward prediction, re...
Autores principales: | Coddington, Luke T., Lindo, Sarah E., Dudman, Joshua T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908546/ https://www.ncbi.nlm.nih.gov/pubmed/36653450 http://dx.doi.org/10.1038/s41586-022-05614-z |
Ejemplares similares
-
The timing of action determines reward prediction signals in identified midbrain dopamine neurons
por: Coddington, Luke T., et al.
Publicado: (2018) -
Dynamic mesolimbic dopamine signaling during action sequence learning and expectation violation
por: Collins, Anne L., et al.
Publicado: (2016) -
Action Initiation Shapes Mesolimbic Dopamine Encoding of Future Rewards
por: Syed, Emilie C.J., et al.
Publicado: (2015) -
Mesolimbic Dopamine Signals the Value of Work
por: Hamid, Arif A., et al.
Publicado: (2015) -
Altered Mesolimbic Dopamine System in THC Dependence
por: Spiga, S, et al.
Publicado: (2011)