Cargando…
Transcriptomics secondary analysis of severe human infection with SARS-CoV-2 identifies gene expression changes and predicts three transcriptional biomarkers in leukocytes
SARS-CoV-2 is the causative agent of COVID-19, which has greatly affected human health since it first emerged. Defining the human factors and biomarkers that differentiate severe SARS-CoV-2 infection from mild infection has become of increasing interest to clinicians. To help address this need, we r...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908618/ https://www.ncbi.nlm.nih.gov/pubmed/36785619 http://dx.doi.org/10.1016/j.csbj.2023.02.003 |
_version_ | 1784884403018661888 |
---|---|
author | Clancy, Jeffrey Hoffmann, Curtis S. Pickett, Brett E. |
author_facet | Clancy, Jeffrey Hoffmann, Curtis S. Pickett, Brett E. |
author_sort | Clancy, Jeffrey |
collection | PubMed |
description | SARS-CoV-2 is the causative agent of COVID-19, which has greatly affected human health since it first emerged. Defining the human factors and biomarkers that differentiate severe SARS-CoV-2 infection from mild infection has become of increasing interest to clinicians. To help address this need, we retrieved 269 public RNA-seq human transcriptome samples from GEO that had qualitative disease severity metadata. We then subjected these samples to a robust RNA-seq data processing workflow to calculate gene expression in PBMCs, whole blood, and leukocytes, as well as to predict transcriptional biomarkers in PBMCs and leukocytes. This process involved using Salmon for read mapping, edgeR to calculate significant differential expression levels, and gene ontology enrichment using Camera. We then performed a random forest machine learning analysis on the read counts data to identify genes that best classified samples based on the COVID-19 severity phenotype. This approach produced a ranked list of leukocyte genes based on their Gini values that includes TGFBI, TTYH2, and CD4, which are associated with both the immune response and inflammation. Our results show that these three genes can potentially classify samples with severe COVID-19 with accuracy of ∼88% and an area under the receiver operating characteristic curve of 92.6--indicating acceptable specificity and sensitivity. We expect that our findings can help contribute to the development of improved diagnostics that may aid in identifying severe COVID-19 cases, guide clinical treatment, and improve mortality rates. |
format | Online Article Text |
id | pubmed-9908618 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Research Network of Computational and Structural Biotechnology |
record_format | MEDLINE/PubMed |
spelling | pubmed-99086182023-02-09 Transcriptomics secondary analysis of severe human infection with SARS-CoV-2 identifies gene expression changes and predicts three transcriptional biomarkers in leukocytes Clancy, Jeffrey Hoffmann, Curtis S. Pickett, Brett E. Comput Struct Biotechnol J Research Article SARS-CoV-2 is the causative agent of COVID-19, which has greatly affected human health since it first emerged. Defining the human factors and biomarkers that differentiate severe SARS-CoV-2 infection from mild infection has become of increasing interest to clinicians. To help address this need, we retrieved 269 public RNA-seq human transcriptome samples from GEO that had qualitative disease severity metadata. We then subjected these samples to a robust RNA-seq data processing workflow to calculate gene expression in PBMCs, whole blood, and leukocytes, as well as to predict transcriptional biomarkers in PBMCs and leukocytes. This process involved using Salmon for read mapping, edgeR to calculate significant differential expression levels, and gene ontology enrichment using Camera. We then performed a random forest machine learning analysis on the read counts data to identify genes that best classified samples based on the COVID-19 severity phenotype. This approach produced a ranked list of leukocyte genes based on their Gini values that includes TGFBI, TTYH2, and CD4, which are associated with both the immune response and inflammation. Our results show that these three genes can potentially classify samples with severe COVID-19 with accuracy of ∼88% and an area under the receiver operating characteristic curve of 92.6--indicating acceptable specificity and sensitivity. We expect that our findings can help contribute to the development of improved diagnostics that may aid in identifying severe COVID-19 cases, guide clinical treatment, and improve mortality rates. Research Network of Computational and Structural Biotechnology 2023-02-09 /pmc/articles/PMC9908618/ /pubmed/36785619 http://dx.doi.org/10.1016/j.csbj.2023.02.003 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Clancy, Jeffrey Hoffmann, Curtis S. Pickett, Brett E. Transcriptomics secondary analysis of severe human infection with SARS-CoV-2 identifies gene expression changes and predicts three transcriptional biomarkers in leukocytes |
title | Transcriptomics secondary analysis of severe human infection with SARS-CoV-2 identifies gene expression changes and predicts three transcriptional biomarkers in leukocytes |
title_full | Transcriptomics secondary analysis of severe human infection with SARS-CoV-2 identifies gene expression changes and predicts three transcriptional biomarkers in leukocytes |
title_fullStr | Transcriptomics secondary analysis of severe human infection with SARS-CoV-2 identifies gene expression changes and predicts three transcriptional biomarkers in leukocytes |
title_full_unstemmed | Transcriptomics secondary analysis of severe human infection with SARS-CoV-2 identifies gene expression changes and predicts three transcriptional biomarkers in leukocytes |
title_short | Transcriptomics secondary analysis of severe human infection with SARS-CoV-2 identifies gene expression changes and predicts three transcriptional biomarkers in leukocytes |
title_sort | transcriptomics secondary analysis of severe human infection with sars-cov-2 identifies gene expression changes and predicts three transcriptional biomarkers in leukocytes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908618/ https://www.ncbi.nlm.nih.gov/pubmed/36785619 http://dx.doi.org/10.1016/j.csbj.2023.02.003 |
work_keys_str_mv | AT clancyjeffrey transcriptomicssecondaryanalysisofseverehumaninfectionwithsarscov2identifiesgeneexpressionchangesandpredictsthreetranscriptionalbiomarkersinleukocytes AT hoffmanncurtiss transcriptomicssecondaryanalysisofseverehumaninfectionwithsarscov2identifiesgeneexpressionchangesandpredictsthreetranscriptionalbiomarkersinleukocytes AT pickettbrette transcriptomicssecondaryanalysisofseverehumaninfectionwithsarscov2identifiesgeneexpressionchangesandpredictsthreetranscriptionalbiomarkersinleukocytes |