Cargando…
Comparison of deep learning-based denoising methods in cardiac SPECT
BACKGROUND: Myocardial perfusion SPECT (MPS) images often suffer from artefacts caused by low-count statistics. Poor-quality images can lead to misinterpretations of perfusion defects. Deep learning (DL)-based methods have been proposed to overcome the noise artefacts. The aim of this study was to i...
Autores principales: | Sohlberg, Antti, Kangasmaa, Tuija, Constable, Chris, Tikkakoski, Antti |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908801/ https://www.ncbi.nlm.nih.gov/pubmed/36752847 http://dx.doi.org/10.1186/s40658-023-00531-0 |
Ejemplares similares
-
Correction: Comparison of deep learning-based denoising methods in cardiac SPECT
por: Sohlberg, Antti, et al.
Publicado: (2023) -
Quantitative bone SPECT/CT reconstruction utilizing anatomical information
por: Kangasmaa, Tuija S., et al.
Publicado: (2021) -
Reduction of Collimator Correction Artefacts with Bayesian Reconstruction in Spect
por: Kangasmaa, Tuija, et al.
Publicado: (2011) -
Optimisation of Simultaneous Tl-201/Tc-99m Dual Isotope Reconstruction with Monte-Carlo-Based Scatter Correction
por: Kangasmaa, Tuija, et al.
Publicado: (2012) -
Quantitative accuracy of (177)Lu SPECT reconstruction using different compensation methods: phantom and patient studies
por: Hippeläinen, Eero, et al.
Publicado: (2016)