Cargando…
Single-shot electron radiography using a laser–plasma accelerator
Contact and projection electron radiography of static targets was demonstrated using a laser–plasma accelerator driven by a kilojoule, picosecond-class laser as a source of relativistic electrons with an average energy of 20 MeV. Objects with areal densities as high as 7.7 g/cm(2) were probed in mat...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908895/ https://www.ncbi.nlm.nih.gov/pubmed/36755138 http://dx.doi.org/10.1038/s41598-023-29217-4 |
Sumario: | Contact and projection electron radiography of static targets was demonstrated using a laser–plasma accelerator driven by a kilojoule, picosecond-class laser as a source of relativistic electrons with an average energy of 20 MeV. Objects with areal densities as high as 7.7 g/cm(2) were probed in materials ranging from plastic to tungsten, and radiographs with resolution as good as 90 μm were produced. The effects of electric fields produced by the laser ablation of the radiography objects were observed and are well described by an analytic expression relating imaging magnification change to electric-field strength. |
---|