Cargando…
Deep learning and data fusion to estimate surface soil moisture from multi-sensor satellite images
We propose a new architecture based on a fully connected feed-forward Artificial Neural Network (ANN) model to estimate surface soil moisture from satellite images on a large alluvial fan of the Kosi River in the Himalayan Foreland. We have extracted nine different features from Sentinel-1 (dual-pol...
Autores principales: | Singh, Abhilash, Gaurav, Kumar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908911/ https://www.ncbi.nlm.nih.gov/pubmed/36754971 http://dx.doi.org/10.1038/s41598-023-28939-9 |
Ejemplares similares
-
An Overview of the “Triangle Method” for Estimating Surface Evapotranspiration and Soil Moisture from Satellite Imagery
por: Carlson, Toby
Publicado: (2007) -
A method for soil moisture probes calibration and validation of satellite estimates
por: Holzman, Mauro, et al.
Publicado: (2017) -
Downscaling satellite soil moisture using geomorphometry and machine learning
por: Guevara, Mario, et al.
Publicado: (2019) -
Closing the Loop of Satellite Soil Moisture Estimation via Scale Invariance of Hydrologic Simulations
por: Mascaro, Giuseppe, et al.
Publicado: (2019) -
Machine Learning Models for Enhanced Estimation of Soil Moisture Using Wideband Radar Sensor
por: Uthayakumar, Akileshwaran, et al.
Publicado: (2022)