Cargando…
Prediction of the tetramer protein complex interaction based on CNN and SVM
Protein-protein interactions play an important role in life activities. The study of protein-protein interactions helps to better understand the mechanism of protein complex interaction, which is crucial for drug design, protein function annotation and three-dimensional structure prediction of prote...
Autores principales: | Lyu, Yanfen, He, Ruonan, Hu, Jingjing, Wang, Chunxia, Gong, Xinqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909274/ https://www.ncbi.nlm.nih.gov/pubmed/36777731 http://dx.doi.org/10.3389/fgene.2023.1076904 |
Ejemplares similares
-
A Two-Layer SVM Ensemble-Classifier to Predict Interface Residue Pairs of Protein Trimers
por: Lyu, Yanfen, et al.
Publicado: (2020) -
Protein Interface Complementarity and Gene Duplication Improve Link Prediction of Protein-Protein Interaction Network
por: Chen, Yu, et al.
Publicado: (2020) -
CNN-SVM Learning Approach Based Human Activity Recognition
por: Basly, Hend, et al.
Publicado: (2020) -
DPPN-SVM: Computational Identification of Mis-Localized Proteins in Cancers by Integrating Differential Gene Expressions With Dynamic Protein-Protein Interaction Networks
por: Li, Guang-Ping, et al.
Publicado: (2020) -
Multi-Class Weed Recognition Using Hybrid CNN-SVM Classifier
por: Wu, Yanjuan, et al.
Publicado: (2023)