Cargando…
HiRAND: A novel GCN semi-supervised deep learning-based framework for classification and feature selection in drug research and development
The prediction of response to drugs before initiating therapy based on transcriptome data is a major challenge. However, identifying effective drug response label data costs time and resources. Methods available often predict poorly and fail to identify robust biomarkers due to the curse of dimensio...
Autores principales: | Huang, Yue, Rong, Zhiwei, Zhang, Liuchao, Xu, Zhenyi, Ji, Jianxin, He, Jia, Liu, Weisha, Hou, Yan, Li, Kang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909422/ https://www.ncbi.nlm.nih.gov/pubmed/36776339 http://dx.doi.org/10.3389/fonc.2023.1047556 |
Ejemplares similares
-
Semi‐supervised classification of fundus images combined with CNN and GCN
por: Duan, Sixu, et al.
Publicado: (2022) -
Predicting the hosts of prokaryotic viruses using GCN-based semi-supervised learning
por: Shang, Jiayu, et al.
Publicado: (2021) -
Deep Low-Density Separation for Semi-supervised Classification
por: Burkhart, Michael C., et al.
Publicado: (2020) -
Deep semi-supervised learning for brain tumor classification
por: Ge, Chenjie, et al.
Publicado: (2020) -
A semi-supervised machine learning framework for microRNA classification
por: Sheikh Hassani, Mohsen, et al.
Publicado: (2019)