Cargando…

Projecting wheat demand in China and India for 2030 and 2050: Implications for food security

INTRODUCTION: The combined populations of China and India were 2.78 billion in 2020, representing 36% of the world population (7.75 billion). Wheat is the second most important staple grain in both China and India. In 2019, the aggregate wheat consumption in China was 96.4 million ton and in India i...

Descripción completa

Detalles Bibliográficos
Autores principales: Mottaleb, Khondoker Abdul, Kruseman, Gideon, Frija, Aymen, Sonder, Kai, Lopez-Ridaura, Santiago
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909467/
https://www.ncbi.nlm.nih.gov/pubmed/36778970
http://dx.doi.org/10.3389/fnut.2022.1077443
_version_ 1784884580827791360
author Mottaleb, Khondoker Abdul
Kruseman, Gideon
Frija, Aymen
Sonder, Kai
Lopez-Ridaura, Santiago
author_facet Mottaleb, Khondoker Abdul
Kruseman, Gideon
Frija, Aymen
Sonder, Kai
Lopez-Ridaura, Santiago
author_sort Mottaleb, Khondoker Abdul
collection PubMed
description INTRODUCTION: The combined populations of China and India were 2.78 billion in 2020, representing 36% of the world population (7.75 billion). Wheat is the second most important staple grain in both China and India. In 2019, the aggregate wheat consumption in China was 96.4 million ton and in India it was 82.5 million ton, together it was more than 35% of the world's wheat that year. In China, in 2050, the projected population will be 1294–1515 million, and in India, it is projected to be 14.89–1793 million, under the low and high-fertility rate assumptions. A question arises as to, what will be aggregate demand for wheat in China and India in 2030 and 2050? METHODS: Applying the Vector Error Correction model estimation process in the time series econometric estimation setting, this study projected the per capita and annual aggregate wheat consumptions of China and India during 2019-2050. In the process, this study relies on agricultural data sourced from the Food and Agriculture Organization of the United States (FAO) database (FAOSTAT), as well as the World Bank's World Development Indicators (WDI) data catalog. The presence of unit root in the data series are tested by applying the augmented Dickey-Fuller test; Philips-Perron unit root test; Kwiatkowski-Phillips-Schmidt-Shin test, and Zivot-Andrews Unit Root test allowing for a single break in intercept and/or trend. The test statistics suggest that a natural log transformation and with the first difference of the variables provides stationarity of the data series for both China and India. The Zivot-Andrews Unit Root test, however, suggested that there is a structural break in urban population share and GDP per capita. To tackle the issue, we have included a year dummy and two multiplicative dummies in our model. Furthermore, the Johansen cointegration test suggests that at least one variable in both data series were cointegrated. These tests enable us to apply Vector Error Correction (VEC) model estimation procedure. In estimation the model, the appropriate number of lags of the variables is confirmed by applying the “varsoc” command in Stata 17 software interface. The estimated yearly per capita wheat consumption in 2030 and 2050 from the VEC model, are multiplied by the projected population in 2030 and 2050 to calculate the projected aggregate wheat demand in China and India in 2030 and 2050. After projecting the yearly per capita wheat consumption (KG), we multiply with the projected population to get the expected consumption demand. RESULTS: This study found that the yearly per capita wheat consumption of China will increase from 65.8 kg in 2019 to 76 kg in 2030, and 95 kg in 2050. In India, the yearly per capita wheat consumption will increase to 74 kg in 2030 and 94 kg in 2050 from 60.4 kg in 2019. Considering the projected population growth rates under low-fertility assumptions, aggregate wheat consumption of China will increase by more than 13% in 2030 and by 28% in 2050. Under the high-fertility rate assumption, however the aggregate wheat consumption of China will increase by 18% in 2030 and nearly 50% in 2050. In the case of India, under both low and high-fertility rate assumptions, aggregate wheat demand in India will increase by 32-38% in 2030 and by 70-104% in 2050 compared to 2019 level of consumption. DISCUSSIONS: Our results underline the importance of wheat in both countries, which are the world's top wheat producers and consumers, and suggest the importance of research and development investments to maintain sufficient national wheat grain production levels to meet China and India's domestic demand. This is critical both to ensure the food security of this large segment of the world populace, which also includes 23% of the total population of the world who live on less than US $1.90/day, as well as to avoid potential grain market destabilization and price hikes that arise in the event of large import demands.
format Online
Article
Text
id pubmed-9909467
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-99094672023-02-10 Projecting wheat demand in China and India for 2030 and 2050: Implications for food security Mottaleb, Khondoker Abdul Kruseman, Gideon Frija, Aymen Sonder, Kai Lopez-Ridaura, Santiago Front Nutr Nutrition INTRODUCTION: The combined populations of China and India were 2.78 billion in 2020, representing 36% of the world population (7.75 billion). Wheat is the second most important staple grain in both China and India. In 2019, the aggregate wheat consumption in China was 96.4 million ton and in India it was 82.5 million ton, together it was more than 35% of the world's wheat that year. In China, in 2050, the projected population will be 1294–1515 million, and in India, it is projected to be 14.89–1793 million, under the low and high-fertility rate assumptions. A question arises as to, what will be aggregate demand for wheat in China and India in 2030 and 2050? METHODS: Applying the Vector Error Correction model estimation process in the time series econometric estimation setting, this study projected the per capita and annual aggregate wheat consumptions of China and India during 2019-2050. In the process, this study relies on agricultural data sourced from the Food and Agriculture Organization of the United States (FAO) database (FAOSTAT), as well as the World Bank's World Development Indicators (WDI) data catalog. The presence of unit root in the data series are tested by applying the augmented Dickey-Fuller test; Philips-Perron unit root test; Kwiatkowski-Phillips-Schmidt-Shin test, and Zivot-Andrews Unit Root test allowing for a single break in intercept and/or trend. The test statistics suggest that a natural log transformation and with the first difference of the variables provides stationarity of the data series for both China and India. The Zivot-Andrews Unit Root test, however, suggested that there is a structural break in urban population share and GDP per capita. To tackle the issue, we have included a year dummy and two multiplicative dummies in our model. Furthermore, the Johansen cointegration test suggests that at least one variable in both data series were cointegrated. These tests enable us to apply Vector Error Correction (VEC) model estimation procedure. In estimation the model, the appropriate number of lags of the variables is confirmed by applying the “varsoc” command in Stata 17 software interface. The estimated yearly per capita wheat consumption in 2030 and 2050 from the VEC model, are multiplied by the projected population in 2030 and 2050 to calculate the projected aggregate wheat demand in China and India in 2030 and 2050. After projecting the yearly per capita wheat consumption (KG), we multiply with the projected population to get the expected consumption demand. RESULTS: This study found that the yearly per capita wheat consumption of China will increase from 65.8 kg in 2019 to 76 kg in 2030, and 95 kg in 2050. In India, the yearly per capita wheat consumption will increase to 74 kg in 2030 and 94 kg in 2050 from 60.4 kg in 2019. Considering the projected population growth rates under low-fertility assumptions, aggregate wheat consumption of China will increase by more than 13% in 2030 and by 28% in 2050. Under the high-fertility rate assumption, however the aggregate wheat consumption of China will increase by 18% in 2030 and nearly 50% in 2050. In the case of India, under both low and high-fertility rate assumptions, aggregate wheat demand in India will increase by 32-38% in 2030 and by 70-104% in 2050 compared to 2019 level of consumption. DISCUSSIONS: Our results underline the importance of wheat in both countries, which are the world's top wheat producers and consumers, and suggest the importance of research and development investments to maintain sufficient national wheat grain production levels to meet China and India's domestic demand. This is critical both to ensure the food security of this large segment of the world populace, which also includes 23% of the total population of the world who live on less than US $1.90/day, as well as to avoid potential grain market destabilization and price hikes that arise in the event of large import demands. Frontiers Media S.A. 2023-01-26 /pmc/articles/PMC9909467/ /pubmed/36778970 http://dx.doi.org/10.3389/fnut.2022.1077443 Text en Copyright © 2023 Mottaleb, Kruseman, Frija, Sonder and Lopez-Ridaura. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Nutrition
Mottaleb, Khondoker Abdul
Kruseman, Gideon
Frija, Aymen
Sonder, Kai
Lopez-Ridaura, Santiago
Projecting wheat demand in China and India for 2030 and 2050: Implications for food security
title Projecting wheat demand in China and India for 2030 and 2050: Implications for food security
title_full Projecting wheat demand in China and India for 2030 and 2050: Implications for food security
title_fullStr Projecting wheat demand in China and India for 2030 and 2050: Implications for food security
title_full_unstemmed Projecting wheat demand in China and India for 2030 and 2050: Implications for food security
title_short Projecting wheat demand in China and India for 2030 and 2050: Implications for food security
title_sort projecting wheat demand in china and india for 2030 and 2050: implications for food security
topic Nutrition
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909467/
https://www.ncbi.nlm.nih.gov/pubmed/36778970
http://dx.doi.org/10.3389/fnut.2022.1077443
work_keys_str_mv AT mottalebkhondokerabdul projectingwheatdemandinchinaandindiafor2030and2050implicationsforfoodsecurity
AT krusemangideon projectingwheatdemandinchinaandindiafor2030and2050implicationsforfoodsecurity
AT frijaaymen projectingwheatdemandinchinaandindiafor2030and2050implicationsforfoodsecurity
AT sonderkai projectingwheatdemandinchinaandindiafor2030and2050implicationsforfoodsecurity
AT lopezridaurasantiago projectingwheatdemandinchinaandindiafor2030and2050implicationsforfoodsecurity