Cargando…

Assessment and Improvement of Drug Data Structuredness From Electronic Health Records: Algorithm Development and Validation

BACKGROUND: Digitization offers a multitude of opportunities to gain insights into current diagnostics and therapies from retrospective data. In this context, real-world data and their accessibility are of increasing importance to support unbiased and reliable research on big data. However, routinel...

Descripción completa

Detalles Bibliográficos
Autores principales: Reinecke, Ines, Siebel, Joscha, Fuhrmann, Saskia, Fischer, Andreas, Sedlmayr, Martin, Weidner, Jens, Bathelt, Franziska
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909518/
https://www.ncbi.nlm.nih.gov/pubmed/36696159
http://dx.doi.org/10.2196/40312
_version_ 1784884593002807296
author Reinecke, Ines
Siebel, Joscha
Fuhrmann, Saskia
Fischer, Andreas
Sedlmayr, Martin
Weidner, Jens
Bathelt, Franziska
author_facet Reinecke, Ines
Siebel, Joscha
Fuhrmann, Saskia
Fischer, Andreas
Sedlmayr, Martin
Weidner, Jens
Bathelt, Franziska
author_sort Reinecke, Ines
collection PubMed
description BACKGROUND: Digitization offers a multitude of opportunities to gain insights into current diagnostics and therapies from retrospective data. In this context, real-world data and their accessibility are of increasing importance to support unbiased and reliable research on big data. However, routinely collected data are not readily usable for research owing to the unstructured nature of health care systems and a lack of interoperability between these systems. This challenge is evident in drug data. OBJECTIVE: This study aimed to present an approach that identifies and increases the structuredness of drug data while ensuring standardization according to Anatomical Therapeutic Chemical (ATC) classification. METHODS: Our approach was based on available drug prescriptions and a drug catalog and consisted of 4 steps. First, we performed an initial analysis of the structuredness of local drug data to define a point of comparison for the effectiveness of the overall approach. Second, we applied 3 algorithms to unstructured data that translated text into ATC codes based on string comparisons in terms of ingredients and product names and performed similarity comparisons based on Levenshtein distance. Third, we validated the results of the 3 algorithms with expert knowledge based on the 1000 most frequently used prescription texts. Fourth, we performed a final validation to determine the increased degree of structuredness. RESULTS: Initially, 47.73% (n=843,980) of 1,768,153 drug prescriptions were classified as structured. With the application of the 3 algorithms, we were able to increase the degree of structuredness to 85.18% (n=1,506,059) based on the 1000 most frequent medication prescriptions. In this regard, the combination of algorithms 1, 2, and 3 resulted in a correctness level of 100% (with 57,264 ATC codes identified), algorithms 1 and 3 resulted in 99.6% (with 152,404 codes identified), and algorithms 1 and 2 resulted in 95.9% (with 39,472 codes identified). CONCLUSIONS: As shown in the first analysis steps of our approach, the availability of a product catalog to select during the documentation process is not sufficient to generate structured data. Our 4-step approach reduces the problems and reliably increases the structuredness automatically. Similarity matching shows promising results, particularly for entries with no connection to a product catalog. However, further enhancement of the correctness of such a similarity matching algorithm needs to be investigated in future work.
format Online
Article
Text
id pubmed-9909518
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-99095182023-02-10 Assessment and Improvement of Drug Data Structuredness From Electronic Health Records: Algorithm Development and Validation Reinecke, Ines Siebel, Joscha Fuhrmann, Saskia Fischer, Andreas Sedlmayr, Martin Weidner, Jens Bathelt, Franziska JMIR Med Inform Original Paper BACKGROUND: Digitization offers a multitude of opportunities to gain insights into current diagnostics and therapies from retrospective data. In this context, real-world data and their accessibility are of increasing importance to support unbiased and reliable research on big data. However, routinely collected data are not readily usable for research owing to the unstructured nature of health care systems and a lack of interoperability between these systems. This challenge is evident in drug data. OBJECTIVE: This study aimed to present an approach that identifies and increases the structuredness of drug data while ensuring standardization according to Anatomical Therapeutic Chemical (ATC) classification. METHODS: Our approach was based on available drug prescriptions and a drug catalog and consisted of 4 steps. First, we performed an initial analysis of the structuredness of local drug data to define a point of comparison for the effectiveness of the overall approach. Second, we applied 3 algorithms to unstructured data that translated text into ATC codes based on string comparisons in terms of ingredients and product names and performed similarity comparisons based on Levenshtein distance. Third, we validated the results of the 3 algorithms with expert knowledge based on the 1000 most frequently used prescription texts. Fourth, we performed a final validation to determine the increased degree of structuredness. RESULTS: Initially, 47.73% (n=843,980) of 1,768,153 drug prescriptions were classified as structured. With the application of the 3 algorithms, we were able to increase the degree of structuredness to 85.18% (n=1,506,059) based on the 1000 most frequent medication prescriptions. In this regard, the combination of algorithms 1, 2, and 3 resulted in a correctness level of 100% (with 57,264 ATC codes identified), algorithms 1 and 3 resulted in 99.6% (with 152,404 codes identified), and algorithms 1 and 2 resulted in 95.9% (with 39,472 codes identified). CONCLUSIONS: As shown in the first analysis steps of our approach, the availability of a product catalog to select during the documentation process is not sufficient to generate structured data. Our 4-step approach reduces the problems and reliably increases the structuredness automatically. Similarity matching shows promising results, particularly for entries with no connection to a product catalog. However, further enhancement of the correctness of such a similarity matching algorithm needs to be investigated in future work. JMIR Publications 2023-01-25 /pmc/articles/PMC9909518/ /pubmed/36696159 http://dx.doi.org/10.2196/40312 Text en ©Ines Reinecke, Joscha Siebel, Saskia Fuhrmann, Andreas Fischer, Martin Sedlmayr, Jens Weidner, Franziska Bathelt. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 25.01.2023. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Original Paper
Reinecke, Ines
Siebel, Joscha
Fuhrmann, Saskia
Fischer, Andreas
Sedlmayr, Martin
Weidner, Jens
Bathelt, Franziska
Assessment and Improvement of Drug Data Structuredness From Electronic Health Records: Algorithm Development and Validation
title Assessment and Improvement of Drug Data Structuredness From Electronic Health Records: Algorithm Development and Validation
title_full Assessment and Improvement of Drug Data Structuredness From Electronic Health Records: Algorithm Development and Validation
title_fullStr Assessment and Improvement of Drug Data Structuredness From Electronic Health Records: Algorithm Development and Validation
title_full_unstemmed Assessment and Improvement of Drug Data Structuredness From Electronic Health Records: Algorithm Development and Validation
title_short Assessment and Improvement of Drug Data Structuredness From Electronic Health Records: Algorithm Development and Validation
title_sort assessment and improvement of drug data structuredness from electronic health records: algorithm development and validation
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909518/
https://www.ncbi.nlm.nih.gov/pubmed/36696159
http://dx.doi.org/10.2196/40312
work_keys_str_mv AT reineckeines assessmentandimprovementofdrugdatastructurednessfromelectronichealthrecordsalgorithmdevelopmentandvalidation
AT siebeljoscha assessmentandimprovementofdrugdatastructurednessfromelectronichealthrecordsalgorithmdevelopmentandvalidation
AT fuhrmannsaskia assessmentandimprovementofdrugdatastructurednessfromelectronichealthrecordsalgorithmdevelopmentandvalidation
AT fischerandreas assessmentandimprovementofdrugdatastructurednessfromelectronichealthrecordsalgorithmdevelopmentandvalidation
AT sedlmayrmartin assessmentandimprovementofdrugdatastructurednessfromelectronichealthrecordsalgorithmdevelopmentandvalidation
AT weidnerjens assessmentandimprovementofdrugdatastructurednessfromelectronichealthrecordsalgorithmdevelopmentandvalidation
AT batheltfranziska assessmentandimprovementofdrugdatastructurednessfromelectronichealthrecordsalgorithmdevelopmentandvalidation