Cargando…
A novel cuproptosis-related LncRNA signature: Prognostic and therapeutic value for low grade glioma
BACKGROUND: As a common primary intracranial tumor, the diagnosis and therapy of low-grade glioma (LGG) remains a pivotal barrier. Cuproptosis, a new way induces cell death, has attracted worldwide attention. However, the relationship between cuproptosis and LGG remains unknown. Our study is all abo...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909527/ https://www.ncbi.nlm.nih.gov/pubmed/36776374 http://dx.doi.org/10.3389/fonc.2022.1087762 |
_version_ | 1784884595104153600 |
---|---|
author | Wen, Jun Zhao, Wenting Shu, Xiaolei |
author_facet | Wen, Jun Zhao, Wenting Shu, Xiaolei |
author_sort | Wen, Jun |
collection | PubMed |
description | BACKGROUND: As a common primary intracranial tumor, the diagnosis and therapy of low-grade glioma (LGG) remains a pivotal barrier. Cuproptosis, a new way induces cell death, has attracted worldwide attention. However, the relationship between cuproptosis and LGG remains unknown. Our study is all about finding out if there are any genes related to coproptosis that can be used to predict the outcome of LGG. METHODS: RNA data and clinical information were selected from Cancer Genome Atlas (TCGA) datasets and the Genotype-Tissue Expression (GTEx), 5 lncRNAs (GAS5.AS1, MYLK.AS1, AC142472.1, AC011346.1, AL359643.3) were identified by Cox univariate and multivariate regression, as well as LASSO Cox regression. In the training and test sets, a dual validation of the predictive signature comprised of these 5 lncRNAs was undertaken. The findings demonstrate that the risk model is able to predict the survival regression of LGG patients and has a good performance in either the KM curve approach or the ROC curve. GO, GSEA and KEGG were carried out to explore the possible molecular processes that affecting the prognosis of LGG. The characteristics of immune microenvironment were investigated by using CIBERSORT, ESTIMATE and ssGSEA. RESULTS: We identified five lncRNAs related with cuproptosis that were closely associated with the prognosis of LGG and used these five lncRNAs to develop a risk model. Using this risk model, LGG patients were then divided into high-risk and low-risk groups. The two patient groups had significantly distinct survival characteristics. Analyses of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the differential genes of the two patient groups were primarily concentrated in neural active ligand-receptor interaction and cytokine-cytokine receptor interaction. The ssGSEA score determined the information related to immune infiltration, and the two groups were differentially expressed in immune subpopulations such as T cells and B cells as well. CONCLUSION: Our study discovered 5 cuproptosis-related lncRNAs which contribute to predicting patients’ survival of LGG and provide ideas for the exploration of new targets for LGG in the future. |
format | Online Article Text |
id | pubmed-9909527 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-99095272023-02-10 A novel cuproptosis-related LncRNA signature: Prognostic and therapeutic value for low grade glioma Wen, Jun Zhao, Wenting Shu, Xiaolei Front Oncol Oncology BACKGROUND: As a common primary intracranial tumor, the diagnosis and therapy of low-grade glioma (LGG) remains a pivotal barrier. Cuproptosis, a new way induces cell death, has attracted worldwide attention. However, the relationship between cuproptosis and LGG remains unknown. Our study is all about finding out if there are any genes related to coproptosis that can be used to predict the outcome of LGG. METHODS: RNA data and clinical information were selected from Cancer Genome Atlas (TCGA) datasets and the Genotype-Tissue Expression (GTEx), 5 lncRNAs (GAS5.AS1, MYLK.AS1, AC142472.1, AC011346.1, AL359643.3) were identified by Cox univariate and multivariate regression, as well as LASSO Cox regression. In the training and test sets, a dual validation of the predictive signature comprised of these 5 lncRNAs was undertaken. The findings demonstrate that the risk model is able to predict the survival regression of LGG patients and has a good performance in either the KM curve approach or the ROC curve. GO, GSEA and KEGG were carried out to explore the possible molecular processes that affecting the prognosis of LGG. The characteristics of immune microenvironment were investigated by using CIBERSORT, ESTIMATE and ssGSEA. RESULTS: We identified five lncRNAs related with cuproptosis that were closely associated with the prognosis of LGG and used these five lncRNAs to develop a risk model. Using this risk model, LGG patients were then divided into high-risk and low-risk groups. The two patient groups had significantly distinct survival characteristics. Analyses of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the differential genes of the two patient groups were primarily concentrated in neural active ligand-receptor interaction and cytokine-cytokine receptor interaction. The ssGSEA score determined the information related to immune infiltration, and the two groups were differentially expressed in immune subpopulations such as T cells and B cells as well. CONCLUSION: Our study discovered 5 cuproptosis-related lncRNAs which contribute to predicting patients’ survival of LGG and provide ideas for the exploration of new targets for LGG in the future. Frontiers Media S.A. 2023-01-26 /pmc/articles/PMC9909527/ /pubmed/36776374 http://dx.doi.org/10.3389/fonc.2022.1087762 Text en Copyright © 2023 Wen, Zhao and Shu https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Wen, Jun Zhao, Wenting Shu, Xiaolei A novel cuproptosis-related LncRNA signature: Prognostic and therapeutic value for low grade glioma |
title | A novel cuproptosis-related LncRNA signature: Prognostic and therapeutic value for low grade glioma |
title_full | A novel cuproptosis-related LncRNA signature: Prognostic and therapeutic value for low grade glioma |
title_fullStr | A novel cuproptosis-related LncRNA signature: Prognostic and therapeutic value for low grade glioma |
title_full_unstemmed | A novel cuproptosis-related LncRNA signature: Prognostic and therapeutic value for low grade glioma |
title_short | A novel cuproptosis-related LncRNA signature: Prognostic and therapeutic value for low grade glioma |
title_sort | novel cuproptosis-related lncrna signature: prognostic and therapeutic value for low grade glioma |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909527/ https://www.ncbi.nlm.nih.gov/pubmed/36776374 http://dx.doi.org/10.3389/fonc.2022.1087762 |
work_keys_str_mv | AT wenjun anovelcuproptosisrelatedlncrnasignatureprognosticandtherapeuticvalueforlowgradeglioma AT zhaowenting anovelcuproptosisrelatedlncrnasignatureprognosticandtherapeuticvalueforlowgradeglioma AT shuxiaolei anovelcuproptosisrelatedlncrnasignatureprognosticandtherapeuticvalueforlowgradeglioma AT wenjun novelcuproptosisrelatedlncrnasignatureprognosticandtherapeuticvalueforlowgradeglioma AT zhaowenting novelcuproptosisrelatedlncrnasignatureprognosticandtherapeuticvalueforlowgradeglioma AT shuxiaolei novelcuproptosisrelatedlncrnasignatureprognosticandtherapeuticvalueforlowgradeglioma |