Cargando…
A pilot study for a non-invasive system for detection of malignancy in canine subcutaneous and cutaneous masses using machine learning
INTRODUCTION: Early diagnosis of cancer enhances treatment planning and improves prognosis. Many masses presenting to veterinary clinics are difficult to diagnose without using invasive, time-consuming, and costly tests. Our objective was to perform a preliminary proof-of-concept for the HT Vista de...
Autores principales: | Dank, Gillian, Buber, Tali, Polliack, Gabriel, Aviram, Gal, Rice, Anna, Yehudayoff, Amir, Kent, Michael S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909829/ https://www.ncbi.nlm.nih.gov/pubmed/36777665 http://dx.doi.org/10.3389/fvets.2023.1109188 |
Ejemplares similares
-
Training and validation of a novel non-invasive imaging system for ruling out malignancy in canine subcutaneous and cutaneous masses using machine learning in 664 masses
por: Dank, Gillian, et al.
Publicado: (2023) -
COX-2 Silencing in Canine Malignant Melanoma Inhibits Malignant Behaviour
por: Silveira, Tatiany L., et al.
Publicado: (2021) -
Tumor-Associated Macrophages in Canine Oral and Cutaneous Melanomas and Melanocytomas: Phenotypic and Prognostic Assessment
por: Porcellato, Ilaria, et al.
Publicado: (2022) -
Malignancy prediction of cutaneous and subcutaneous neoplasms in canines using B-mode ultrasonography, Doppler, and ARFI elastography
por: da Cruz, Igor Cezar Kniphoff, et al.
Publicado: (2022) -
Histopathological Classification of Canine Cutaneous Round Cell Tumors Using Deep Learning: A Multi-Center Study
por: Salvi, Massimo, et al.
Publicado: (2021)