Cargando…
pLMSNOSite: an ensemble-based approach for predicting protein S-nitrosylation sites by integrating supervised word embedding and embedding from pre-trained protein language model
BACKGROUND: Protein S-nitrosylation (SNO) plays a key role in transferring nitric oxide-mediated signals in both animals and plants and has emerged as an important mechanism for regulating protein functions and cell signaling of all main classes of protein. It is involved in several biological proce...
Autores principales: | Pratyush, Pawel, Pokharel, Suresh, Saigo, Hiroto, KC, Dukka B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909867/ https://www.ncbi.nlm.nih.gov/pubmed/36755242 http://dx.doi.org/10.1186/s12859-023-05164-9 |
Ejemplares similares
-
Improving protein succinylation sites prediction using embeddings from protein language model
por: Pokharel, Suresh, et al.
Publicado: (2022) -
Integrating Embeddings from Multiple Protein Language Models to Improve Protein O-GlcNAc Site Prediction
por: Pokharel, Suresh, et al.
Publicado: (2023) -
Word embeddings
por: Hellrich, J
Publicado: (2019) -
Einstein–Roscoe regression for the slag viscosity prediction problem in steelmaking
por: Saigo, Hiroto, et al.
Publicado: (2022) -
Supervised learning with word embeddings derived from PubMed captures latent knowledge about protein kinases and cancer
por: Ravanmehr, Vida, et al.
Publicado: (2021)