Cargando…

In vitro and in vivo analyses on anti-NSCLC activity of apatinib: rediscovery of a new drug target V600E mutation

BACKGROUND: Apatinib (YN968D1) is the first small-molecule-targeting drug with anti-tumor activity created in China for the treatment of advanced gastric cancer (GC) and hepatocellular carcinoma (HCC). It showed significant variation in the efficacy for treating cancers, including advanced non-squam...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Jiani, Zhai, Jingwen, Li, Mingming, Liu, Shiyi, Gong, Xiaobin, Yu, Hongyu, Wei, Hua, Chen, Wansheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909954/
https://www.ncbi.nlm.nih.gov/pubmed/36759818
http://dx.doi.org/10.1186/s12935-022-02723-7
Descripción
Sumario:BACKGROUND: Apatinib (YN968D1) is the first small-molecule-targeting drug with anti-tumor activity created in China for the treatment of advanced gastric cancer (GC) and hepatocellular carcinoma (HCC). It showed significant variation in the efficacy for treating cancers, including advanced non-squamous non-small-cell lung cancer (NSCLC). Whether its efficacy could be optimized by subgrouping patients with certain genetic variation remains elusive. METHODS: Here, we firstly used kinase screening to identify any possible target of apatinib against 138 kinases. The effects of apatinib on proliferation rates, cell cycle, cell apoptosis, and cell migration on cancer cell lines were analyzed; the in vitro potential pathways of apatinib on cancer cell lines were screened. The effect of apatinib on mouse cancer models in vivo was also analyzed. RESULTS: Based on HCC364 cells with BRAF V600E mutation, we have shown that apatinib could inhibit their growth, migration, cell cycle, and induce their apoptosis. Based on mice with transplanted HCC364 cells, we have also shown that apatinib could inhibit the tumor growth. Based on immunohistochemistry, we have demonstrated that apatinib could suppress the phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase and extracellular regulated protein kinases. This may account at least part of the apatinib’s inhibitory effect on HCC364 cancer cells. CONCLUSIONS: BRAF V600E protein kinase is a target of apatinib by kinase screening. We have demonstrated that apatinib can effectively inhibit tumor cells with BRAF V600E mutation by in vitro and in vivo experiments. Our results have demonstrated that targeting BRAF V600E mutation, apatinib appears to be effective and safe for treating NSCLC and possibly other cancers with the same mutation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12935-022-02723-7.