Cargando…
Efficient Training on Alzheimer’s Disease Diagnosis with Learnable Weighted Pooling for 3D PET Brain Image Classification
Three-dimensional convolutional neural networks (3D CNNs) have been widely applied to analyze Alzheimer’s disease (AD) brain images for a better understanding of the disease progress or predicting the conversion from cognitively impaired (CU) or mild cognitive impairment status. It is well-known tha...
Autores principales: | Xing, Xin, Rafique, Muhammad Usman, Liang, Gongbo, Blanton, Hunter, Zhang, Yu, Wang, Chris, Jacobs, Nathan, Lin, Ai-Ling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9910214/ https://www.ncbi.nlm.nih.gov/pubmed/36778519 http://dx.doi.org/10.3390/electronics12020467 |
Ejemplares similares
-
Deep Learnability: Using Neural Networks to Quantify Language Similarity and Learnability
por: Cohen, Clara, et al.
Publicado: (2020) -
Learnability for the Information Bottleneck
por: Wu, Tailin, et al.
Publicado: (2019) -
The learnability of Pauli noise
por: Chen, Senrui, et al.
Publicado: (2023) -
Zero-Shot Image Classification Based on a Learnable Deep Metric
por: Liu, Jingyi, et al.
Publicado: (2021) -
Network architectures supporting learnability
por: Zurn, Perry, et al.
Publicado: (2020)