Cargando…
Prior knowledge auxiliary for few-shot pest detection in the wild
One of the main techniques in smart plant protection is pest detection using deep learning technology, which is convenient, cost-effective, and responsive. However, existing deep-learning-based methods can detect only over a dozen common types of bulk agricultural pests in structured environments. A...
Autores principales: | Wang, Xiaodong, Du, Jianming, Xie, Chengjun, Wu, Shilian, Ma, Xiao, Liu, Kang, Dong, Shifeng, Chen, Tianjiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9910215/ https://www.ncbi.nlm.nih.gov/pubmed/36777532 http://dx.doi.org/10.3389/fpls.2022.1033544 |
Ejemplares similares
-
ASP-Det: Toward Appearance-Similar Light-Trap Agricultural Pest Detection and Recognition
por: Wang, Fenmei, et al.
Publicado: (2022) -
Research on the identification and detection of field pests in the complex background based on the rotation detection algorithm
por: Zhang, Wei, et al.
Publicado: (2022) -
Global Context-Aware-Based Deformable Residual Network Module for Precise Pest Recognition and Detection
por: Jiao, Lin, et al.
Publicado: (2022) -
Few-shot learning approach with multi-scale feature fusion and attention for plant disease recognition
por: Lin, Hong, et al.
Publicado: (2022) -
Analysis of Few-Shot Techniques for Fungal Plant Disease Classification and Evaluation of Clustering Capabilities Over Real Datasets
por: Egusquiza, Itziar, et al.
Publicado: (2022)