Cargando…
Application of a Machine Learning Algorithm to Develop and Validate a Prediction Model for Ambulatory Non-Arrivals
BACKGROUND: Non-arrivals to scheduled ambulatory visits are common and lead to a discontinuity of care, poor health outcomes, and increased subsequent healthcare utilization. Reducing non-arrivals is important given their association with poorer health outcomes and cost to health systems. OBJECTIVE:...
Autores principales: | Coppa, Kevin, Kim, Eun Ji, Oppenheim, Michael I., Bock, Kevin R., Zanos, Theodoros P., Hirsch, Jamie S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9910253/ https://www.ncbi.nlm.nih.gov/pubmed/36757667 http://dx.doi.org/10.1007/s11606-023-08065-y |
Ejemplares similares
-
Machine learning to assist clinical decision-making during the COVID-19 pandemic
por: Debnath, Shubham, et al.
Publicado: (2020) -
An approach to predicting patient experience through machine learning and social network analysis
por: Bari, Vitej, et al.
Publicado: (2020) -
A Machine Learning Prediction Model of Respiratory Failure Within 48 Hours of Patient Admission for COVID-19: Model Development and Validation
por: Bolourani, Siavash, et al.
Publicado: (2021) -
Let Sleeping Patients Lie, avoiding unnecessary overnight vitals monitoring using a clinically based deep-learning model
por: Tóth, Viktor, et al.
Publicado: (2020) -
Development and validation of self-monitoring auto-updating prognostic models of survival for hospitalized COVID-19 patients
por: Levy, Todd J., et al.
Publicado: (2022)