Cargando…

Thermal degradation and flame retardancy of nylon 6/aluminum methylmethoxy phosphonate composites

An aluminum methylmethoxyphosphonate (AlPo)-based flame retardant (FR) was synthesized. Thermal degradation and flame retardancy of nylon 6 (PA6)/AlPo composites were examined and compared with PA6/commercial aluminum diethylphosphinate (AlPi) composites. The PA6/AlPo composite achieved a V-0 rating...

Descripción completa

Detalles Bibliográficos
Autores principales: Vothi, Hai, Kim, Chowon, Nguyen, TanBinh, Lee, Jinwoo, Nguyen, Lan-Anh T., Suhr, Jonghwan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9910282/
https://www.ncbi.nlm.nih.gov/pubmed/36777944
http://dx.doi.org/10.1039/d2ra07297a
Descripción
Sumario:An aluminum methylmethoxyphosphonate (AlPo)-based flame retardant (FR) was synthesized. Thermal degradation and flame retardancy of nylon 6 (PA6)/AlPo composites were examined and compared with PA6/commercial aluminum diethylphosphinate (AlPi) composites. The PA6/AlPo composite achieved a V-0 rating at 20 wt% loading during the UL-94 test, and it exhibited the formation of a charred layer that protected the polymer from burning and reduced the release of gases during the combustion of PA6. AlPo demonstrated exceptional performance in gaseous and condensed phases in the PA6 matrix, whereas AlPi only worked in the gaseous phase. The differences between the thermal degradation mechanisms and flame retardancies of AlPi and AlPo were investigated via Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and cone calorimetry. A suitable degradation mechanism was proposed to aid the development of flame retardants in the future.