Cargando…
Robotic data acquisition with deep learning enables cell image–based prediction of transcriptomic phenotypes
Single-cell whole-transcriptome analysis is the gold standard approach to identifying molecularly defined cell phenotypes. However, this approach cannot be used for dynamics measurements such as live-cell imaging. Here, we developed a multifunctional robot, the automated live imaging and cell pickin...
Autores principales: | Jin, Jianshi, Ogawa, Taisaku, Hojo, Nozomi, Kryukov, Kirill, Shimizu, Kenji, Ikawa, Tomokatsu, Imanishi, Tadashi, Okazaki, Taku, Shiroguchi, Katsuyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9910600/ https://www.ncbi.nlm.nih.gov/pubmed/36577074 http://dx.doi.org/10.1073/pnas.2210283120 |
Ejemplares similares
-
The efficacy and further functional advantages of random-base molecular barcodes for absolute and digital quantification of nucleic acid molecules
por: Ogawa, Taisaku, et al.
Publicado: (2017) -
Different cell imaging methods did not significantly improve immune cell image classification performance
por: Ogawa, Taisaku, et al.
Publicado: (2022) -
High-throughput identification and quantification of single bacterial cells in the microbiota
por: Jin, Jianshi, et al.
Publicado: (2022) -
Cbfβ2 deficiency preserves Langerhans cell precursors by lack of selective TGFβ receptor signaling
por: Tenno, Mari, et al.
Publicado: (2017) -
Identifying a Lung Stem Cell Subpopulation by Combining Single-Cell Morphometrics, Organoid Culture, and Transcriptomics
por: Fujimura, Takashi, et al.
Publicado: (2023)