Cargando…
Construction of a new smooth support vector machine model and its application in heart disease diagnosis
Support vector machine (SVM) is a new machine learning method developed from statistical learning theory. Since the objective function of the unconstrained SVM model is a non-smooth function, a lot of fast optimization algorithms can’t be used to find the solution. Firstly, to overcome the non-smoot...
Autores principales: | Wang, Jianjian, He, Feng, Sun, Shouheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9910651/ https://www.ncbi.nlm.nih.gov/pubmed/36758063 http://dx.doi.org/10.1371/journal.pone.0280804 |
Ejemplares similares
-
The Construction of Support Vector Machine Classifier Using the Firefly Algorithm
por: Chao, Chih-Feng, et al.
Publicado: (2015) -
Support vector machines applications
por: Ma, Yunqian, et al.
Publicado: (2014) -
Overcome Support Vector Machine Diagnosis Overfitting
por: Han, Henry, et al.
Publicado: (2014) -
Application of Support Vector Machine for Prediction of Medication Adherence in Heart Failure Patients
por: Son, Youn-Jung, et al.
Publicado: (2010) -
Risk gene identification and support vector machine learning to construct an early diagnosis model of myocardial infarction
por: Fang, Hong-Zhi, et al.
Publicado: (2020)