Cargando…
Disentangled Representation Learning for OCTA Vessel Segmentation With Limited Training Data
Optical coherence tomography angiography (OCTA) is an imaging modality that can be used for analyzing retinal vasculature. Quantitative assessment of en face OCTA images requires accurate segmentation of the capillaries. Using deep learning approaches for this task faces two major challenges. First,...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9910788/ https://www.ncbi.nlm.nih.gov/pubmed/35862335 http://dx.doi.org/10.1109/TMI.2022.3193029 |
_version_ | 1784884861042950144 |
---|---|
author | Liu, Yihao Carass, Aaron Zuo, Lianrui He, Yufan Han, Shuo Gregori, Lorenzo Murray, Sean Mishra, Rohit Lei, Jianqin Calabresi, Peter A. Saidha, Shiv Prince, Jerry L. |
author_facet | Liu, Yihao Carass, Aaron Zuo, Lianrui He, Yufan Han, Shuo Gregori, Lorenzo Murray, Sean Mishra, Rohit Lei, Jianqin Calabresi, Peter A. Saidha, Shiv Prince, Jerry L. |
author_sort | Liu, Yihao |
collection | PubMed |
description | Optical coherence tomography angiography (OCTA) is an imaging modality that can be used for analyzing retinal vasculature. Quantitative assessment of en face OCTA images requires accurate segmentation of the capillaries. Using deep learning approaches for this task faces two major challenges. First, acquiring sufficient manual delineations for training can take hundreds of hours. Second, OCTA images suffer from numerous contrast-related artifacts that are currently inherent to the modality and vary dramatically across scanners. We propose to solve both problems by learning a disentanglement of an anatomy component and a local contrast component from paired OCTA scans. With the contrast removed from the anatomy component, a deep learning model that takes the anatomy component as input can learn to segment vessels with a limited portion of the training images being manually labeled. Our method demonstrates state-of-the-art performance for OCTA vessel segmentation. |
format | Online Article Text |
id | pubmed-9910788 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-99107882023-02-09 Disentangled Representation Learning for OCTA Vessel Segmentation With Limited Training Data Liu, Yihao Carass, Aaron Zuo, Lianrui He, Yufan Han, Shuo Gregori, Lorenzo Murray, Sean Mishra, Rohit Lei, Jianqin Calabresi, Peter A. Saidha, Shiv Prince, Jerry L. IEEE Trans Med Imaging Article Optical coherence tomography angiography (OCTA) is an imaging modality that can be used for analyzing retinal vasculature. Quantitative assessment of en face OCTA images requires accurate segmentation of the capillaries. Using deep learning approaches for this task faces two major challenges. First, acquiring sufficient manual delineations for training can take hundreds of hours. Second, OCTA images suffer from numerous contrast-related artifacts that are currently inherent to the modality and vary dramatically across scanners. We propose to solve both problems by learning a disentanglement of an anatomy component and a local contrast component from paired OCTA scans. With the contrast removed from the anatomy component, a deep learning model that takes the anatomy component as input can learn to segment vessels with a limited portion of the training images being manually labeled. Our method demonstrates state-of-the-art performance for OCTA vessel segmentation. 2022-12 2022-12-02 /pmc/articles/PMC9910788/ /pubmed/35862335 http://dx.doi.org/10.1109/TMI.2022.3193029 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ |
spellingShingle | Article Liu, Yihao Carass, Aaron Zuo, Lianrui He, Yufan Han, Shuo Gregori, Lorenzo Murray, Sean Mishra, Rohit Lei, Jianqin Calabresi, Peter A. Saidha, Shiv Prince, Jerry L. Disentangled Representation Learning for OCTA Vessel Segmentation With Limited Training Data |
title | Disentangled Representation Learning for OCTA Vessel Segmentation With Limited Training Data |
title_full | Disentangled Representation Learning for OCTA Vessel Segmentation With Limited Training Data |
title_fullStr | Disentangled Representation Learning for OCTA Vessel Segmentation With Limited Training Data |
title_full_unstemmed | Disentangled Representation Learning for OCTA Vessel Segmentation With Limited Training Data |
title_short | Disentangled Representation Learning for OCTA Vessel Segmentation With Limited Training Data |
title_sort | disentangled representation learning for octa vessel segmentation with limited training data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9910788/ https://www.ncbi.nlm.nih.gov/pubmed/35862335 http://dx.doi.org/10.1109/TMI.2022.3193029 |
work_keys_str_mv | AT liuyihao disentangledrepresentationlearningforoctavesselsegmentationwithlimitedtrainingdata AT carassaaron disentangledrepresentationlearningforoctavesselsegmentationwithlimitedtrainingdata AT zuolianrui disentangledrepresentationlearningforoctavesselsegmentationwithlimitedtrainingdata AT heyufan disentangledrepresentationlearningforoctavesselsegmentationwithlimitedtrainingdata AT hanshuo disentangledrepresentationlearningforoctavesselsegmentationwithlimitedtrainingdata AT gregorilorenzo disentangledrepresentationlearningforoctavesselsegmentationwithlimitedtrainingdata AT murraysean disentangledrepresentationlearningforoctavesselsegmentationwithlimitedtrainingdata AT mishrarohit disentangledrepresentationlearningforoctavesselsegmentationwithlimitedtrainingdata AT leijianqin disentangledrepresentationlearningforoctavesselsegmentationwithlimitedtrainingdata AT calabresipetera disentangledrepresentationlearningforoctavesselsegmentationwithlimitedtrainingdata AT saidhashiv disentangledrepresentationlearningforoctavesselsegmentationwithlimitedtrainingdata AT princejerryl disentangledrepresentationlearningforoctavesselsegmentationwithlimitedtrainingdata |