Cargando…
Disentangled Representation Learning for OCTA Vessel Segmentation With Limited Training Data
Optical coherence tomography angiography (OCTA) is an imaging modality that can be used for analyzing retinal vasculature. Quantitative assessment of en face OCTA images requires accurate segmentation of the capillaries. Using deep learning approaches for this task faces two major challenges. First,...
Autores principales: | Liu, Yihao, Carass, Aaron, Zuo, Lianrui, He, Yufan, Han, Shuo, Gregori, Lorenzo, Murray, Sean, Mishra, Rohit, Lei, Jianqin, Calabresi, Peter A., Saidha, Shiv, Prince, Jerry L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9910788/ https://www.ncbi.nlm.nih.gov/pubmed/35862335 http://dx.doi.org/10.1109/TMI.2022.3193029 |
Ejemplares similares
-
Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory
por: Zuo, Lianrui, et al.
Publicado: (2021) -
Retinal layer parcellation of optical coherence tomography images: Data resource for multiple sclerosis and healthy controls
por: He, Yufan, et al.
Publicado: (2018) -
Applying an Open-Source Segmentation Algorithm to Different OCT Devices in Multiple Sclerosis Patients and Healthy Controls: Implications for Clinical Trials
por: Bhargava, Pavan, et al.
Publicado: (2015) -
Emerging Applications of Optical Coherence Tomography Angiography (OCTA) in neurological research
por: Wang, Liang, et al.
Publicado: (2018) -
Retinal layer segmentation of macular OCT images using boundary classification
por: Lang, Andrew, et al.
Publicado: (2013)