Cargando…
Genetics of tibia bone properties of crossbred commercial laying hens in different housing systems
Osteoporosis and bone fractures are a severe problem for the welfare of laying hens, with genetics and environment, such as housing system, each making substantial contributions to bone strength. In this work, we performed genetic analyses of bone strength, bone mineral density, and bone composition...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9911068/ https://www.ncbi.nlm.nih.gov/pubmed/36453438 http://dx.doi.org/10.1093/g3journal/jkac302 |
_version_ | 1784884922142425088 |
---|---|
author | Johnsson, Martin Wall, Helena Lopes Pinto, Fernando A Fleming, Robert H McCormack, Heather A Benavides-Reyes, Cristina Dominguez-Gasca, Nazaret Sanchez-Rodriguez, Estefania Dunn, Ian C Rodriguez-Navarro, Alejandro B Kindmark, Andreas de Koning, Dirk-Jan |
author_facet | Johnsson, Martin Wall, Helena Lopes Pinto, Fernando A Fleming, Robert H McCormack, Heather A Benavides-Reyes, Cristina Dominguez-Gasca, Nazaret Sanchez-Rodriguez, Estefania Dunn, Ian C Rodriguez-Navarro, Alejandro B Kindmark, Andreas de Koning, Dirk-Jan |
author_sort | Johnsson, Martin |
collection | PubMed |
description | Osteoporosis and bone fractures are a severe problem for the welfare of laying hens, with genetics and environment, such as housing system, each making substantial contributions to bone strength. In this work, we performed genetic analyses of bone strength, bone mineral density, and bone composition, as well as body weight, in 860 commercial crossbred laying hens from 2 different companies, kept in either furnished cages or floor pens. We compared bone traits between housing systems and crossbreds and performed a genome-wide association study of bone properties and body weight. As expected, the 2 housing systems produced a large difference in bone strength, with layers housed in floor pens having stronger bones. These differences were accompanied by differences in bone geometry, mineralization, and chemical composition. Genome scans either combining or independently analyzing the 2 housing systems revealed no genome-wide significant loci for bone breaking strength. We detected 3 loci for body weight that were shared between the housing systems on chromosomes 4, 6, and 27 (either genome-wide significant or suggestive) and these coincide with associations for bone length. In summary, we found substantial differences in bone strength, content, and composition between hens kept in floor pens and furnished cages that could be attributed to greater physical activity in pen housing. We found little evidence for large-effect loci for bone strength in commercial crossbred hens, consistent with a highly polygenic architecture for bone strength in the production environment. The lack of consistent genetic associations between housing systems in combination with the differences in bone phenotypes could be due to gene-by-environment interactions with housing system or a lack of power to detect shared associations for bone strength. |
format | Online Article Text |
id | pubmed-9911068 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-99110682023-02-13 Genetics of tibia bone properties of crossbred commercial laying hens in different housing systems Johnsson, Martin Wall, Helena Lopes Pinto, Fernando A Fleming, Robert H McCormack, Heather A Benavides-Reyes, Cristina Dominguez-Gasca, Nazaret Sanchez-Rodriguez, Estefania Dunn, Ian C Rodriguez-Navarro, Alejandro B Kindmark, Andreas de Koning, Dirk-Jan G3 (Bethesda) Investigation Osteoporosis and bone fractures are a severe problem for the welfare of laying hens, with genetics and environment, such as housing system, each making substantial contributions to bone strength. In this work, we performed genetic analyses of bone strength, bone mineral density, and bone composition, as well as body weight, in 860 commercial crossbred laying hens from 2 different companies, kept in either furnished cages or floor pens. We compared bone traits between housing systems and crossbreds and performed a genome-wide association study of bone properties and body weight. As expected, the 2 housing systems produced a large difference in bone strength, with layers housed in floor pens having stronger bones. These differences were accompanied by differences in bone geometry, mineralization, and chemical composition. Genome scans either combining or independently analyzing the 2 housing systems revealed no genome-wide significant loci for bone breaking strength. We detected 3 loci for body weight that were shared between the housing systems on chromosomes 4, 6, and 27 (either genome-wide significant or suggestive) and these coincide with associations for bone length. In summary, we found substantial differences in bone strength, content, and composition between hens kept in floor pens and furnished cages that could be attributed to greater physical activity in pen housing. We found little evidence for large-effect loci for bone strength in commercial crossbred hens, consistent with a highly polygenic architecture for bone strength in the production environment. The lack of consistent genetic associations between housing systems in combination with the differences in bone phenotypes could be due to gene-by-environment interactions with housing system or a lack of power to detect shared associations for bone strength. Oxford University Press 2022-12-01 /pmc/articles/PMC9911068/ /pubmed/36453438 http://dx.doi.org/10.1093/g3journal/jkac302 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of the Genetics Society of America. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Investigation Johnsson, Martin Wall, Helena Lopes Pinto, Fernando A Fleming, Robert H McCormack, Heather A Benavides-Reyes, Cristina Dominguez-Gasca, Nazaret Sanchez-Rodriguez, Estefania Dunn, Ian C Rodriguez-Navarro, Alejandro B Kindmark, Andreas de Koning, Dirk-Jan Genetics of tibia bone properties of crossbred commercial laying hens in different housing systems |
title | Genetics of tibia bone properties of crossbred commercial laying hens in different housing systems |
title_full | Genetics of tibia bone properties of crossbred commercial laying hens in different housing systems |
title_fullStr | Genetics of tibia bone properties of crossbred commercial laying hens in different housing systems |
title_full_unstemmed | Genetics of tibia bone properties of crossbred commercial laying hens in different housing systems |
title_short | Genetics of tibia bone properties of crossbred commercial laying hens in different housing systems |
title_sort | genetics of tibia bone properties of crossbred commercial laying hens in different housing systems |
topic | Investigation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9911068/ https://www.ncbi.nlm.nih.gov/pubmed/36453438 http://dx.doi.org/10.1093/g3journal/jkac302 |
work_keys_str_mv | AT johnssonmartin geneticsoftibiabonepropertiesofcrossbredcommerciallayinghensindifferenthousingsystems AT wallhelena geneticsoftibiabonepropertiesofcrossbredcommerciallayinghensindifferenthousingsystems AT lopespintofernandoa geneticsoftibiabonepropertiesofcrossbredcommerciallayinghensindifferenthousingsystems AT flemingroberth geneticsoftibiabonepropertiesofcrossbredcommerciallayinghensindifferenthousingsystems AT mccormackheathera geneticsoftibiabonepropertiesofcrossbredcommerciallayinghensindifferenthousingsystems AT benavidesreyescristina geneticsoftibiabonepropertiesofcrossbredcommerciallayinghensindifferenthousingsystems AT dominguezgascanazaret geneticsoftibiabonepropertiesofcrossbredcommerciallayinghensindifferenthousingsystems AT sanchezrodriguezestefania geneticsoftibiabonepropertiesofcrossbredcommerciallayinghensindifferenthousingsystems AT dunnianc geneticsoftibiabonepropertiesofcrossbredcommerciallayinghensindifferenthousingsystems AT rodrigueznavarroalejandrob geneticsoftibiabonepropertiesofcrossbredcommerciallayinghensindifferenthousingsystems AT kindmarkandreas geneticsoftibiabonepropertiesofcrossbredcommerciallayinghensindifferenthousingsystems AT dekoningdirkjan geneticsoftibiabonepropertiesofcrossbredcommerciallayinghensindifferenthousingsystems |