Cargando…
Genome assembly of the acoel flatworm Symsagittifera roscoffensis, a model for research on body plan evolution and photosymbiosis
Symsagittifera roscoffensis is a well-known member of the order Acoela that lives in symbiosis with the algae Tetraselmis convolutae during its adult stage. Its natural habitat is the eastern coast of the Atlantic, where at specific locations thousands of individuals can be found, mostly, lying in l...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9911081/ https://www.ncbi.nlm.nih.gov/pubmed/36542495 http://dx.doi.org/10.1093/g3journal/jkac336 |
Sumario: | Symsagittifera roscoffensis is a well-known member of the order Acoela that lives in symbiosis with the algae Tetraselmis convolutae during its adult stage. Its natural habitat is the eastern coast of the Atlantic, where at specific locations thousands of individuals can be found, mostly, lying in large pools on the surface of sand at low tide. As a member of the Acoela it has been thought as a proxy for ancestral bilaterian animals; however, its phylogenetic position remains still debated. In order to understand the basic structural characteristics of the acoel genome, we sequenced and assembled the genome of aposymbiotic species S. roscoffensis. The size of this genome was measured to be in the range of 910–940 Mb. Sequencing of the genome was performed using PacBio Hi-Fi technology. Hi-C and RNA-seq data were also generated to scaffold and annotate it. The resulting assembly is 1.1 Gb large (covering 118% of the estimated genome size) and highly continuous, with N50 scaffold size of 1.04 Mb. The repetitive fraction of the genome is 61%, of which 85% (half of the genome) are LTR retrotransposons. Genome-guided transcriptome assembly identified 34,493 genes, of which 29,351 are protein coding (BUSCO score 97.6%), and 30.2% of genes are spliced leader trans-spliced. The completeness of this genome suggests that it can be used extensively to characterize gene families and conduct accurate phylogenomic reconstructions. |
---|