Cargando…
Machine learning models for predicting steroid-resistant of nephrotic syndrome
BACKGROUND: In the absence of effective measures to predict steroid responsiveness, patients with nonhereditary steroid-resistant nephrotic syndrome (SRNS) have a significantly increased risk of progression to end-stage renal disease. In view of the poor outcomes of SRNS, it is urgent to identify th...
Autores principales: | Ye, Qing, Li, Yuzhou, Liu, Huihui, Mao, Jianhua, Jiang, Hangjin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9911108/ https://www.ncbi.nlm.nih.gov/pubmed/36776850 http://dx.doi.org/10.3389/fimmu.2023.1090241 |
Ejemplares similares
-
Urinary Sediment mRNA Level of CREBBP and CYBA in Children With Steroid-Resistant Nephrotic Syndrome
por: Li, Wei, et al.
Publicado: (2022) -
Biologics in steroid resistant nephrotic syndrome in childhood: review and new hypothesis-driven treatment
por: Angeletti, Andrea, et al.
Publicado: (2023) -
Prediction of steroid resistance and steroid dependence in nephrotic syndrome children
por: Zaorska, Katarzyna, et al.
Publicado: (2021) -
CCL22 and Leptin associated with steroid resistance in childhood idiopathic nephrotic syndrome
por: Zhaoyang, Peng, et al.
Publicado: (2023) -
Evaluation of Immune and Vaccine Competence in Steroid-Sensitive Nephrotic Syndrome Pediatric Patients
por: Colucci, Manuela, et al.
Publicado: (2021)