Cargando…

Deep Learning and Medical Image Processing Techniques for Diabetic Retinopathy: A Survey of Applications, Challenges, and Future Trends

Diabetic retinopathy (DR) is a common eye retinal disease that is widely spread all over the world. It leads to the complete loss of vision based on the level of severity. It damages both retinal blood vessels and the eye's microscopic interior layers. To avoid such issues, early detection of D...

Descripción completa

Detalles Bibliográficos
Autores principales: Uppamma, Posham, Bhattacharya, Sweta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9911247/
https://www.ncbi.nlm.nih.gov/pubmed/36776951
http://dx.doi.org/10.1155/2023/2728719
Descripción
Sumario:Diabetic retinopathy (DR) is a common eye retinal disease that is widely spread all over the world. It leads to the complete loss of vision based on the level of severity. It damages both retinal blood vessels and the eye's microscopic interior layers. To avoid such issues, early detection of DR is essential in association with routine screening methods to discover mild causes in manual initiation. But these diagnostic procedures are extremely difficult and expensive. The unique contributions of the study include the following: first, providing detailed background of the DR disease and the traditional detection techniques. Second, the various imaging techniques and deep learning applications in DR are presented. Third, the different use cases and real-life scenarios are explored relevant to DR detection wherein deep learning techniques have been implemented. The study finally highlights the potential research opportunities for researchers to explore and deliver effective performance results in diabetic retinopathy detection.