Cargando…
AlphaFill: enriching AlphaFold models with ligands and cofactors
Artificial intelligence-based protein structure prediction approaches have had a transformative effect on biomolecular sciences. The predicted protein models in the AlphaFold protein structure database, however, all lack coordinates for small molecules, essential for molecular structure or function:...
Autores principales: | Hekkelman, Maarten L., de Vries, Ida, Joosten, Robbie P., Perrakis, Anastassis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9911346/ https://www.ncbi.nlm.nih.gov/pubmed/36424442 http://dx.doi.org/10.1038/s41592-022-01685-y |
Ejemplares similares
-
AI revolutions in biology: The joys and perils of AlphaFold
por: Perrakis, Anastassis, et al.
Publicado: (2021) -
AlphaFold2-multimer guided high-accuracy prediction of typical and atypical ATG8-binding motifs
por: Ibrahim, Tarhan, et al.
Publicado: (2023) -
AlphaFold and the future of structural biology
por: Read, Randy J., et al.
Publicado: (2023) -
Rapid and accurate deorphanization of ligand-receptor pairs using AlphaFold
por: Danneskiold-Samsøe, Niels Banhos, et al.
Publicado: (2023) -
Homology-based loop modeling yields more complete crystallographic protein structures
por: van Beusekom, Bart, et al.
Publicado: (2018)