Cargando…
Nonnegative spatial factorization applied to spatial genomics
Nonnegative matrix factorization (NMF) is widely used to analyze high-dimensional count data because, in contrast to real-valued alternatives such as factor analysis, it produces an interpretable parts-based representation. However, in applications such as spatial transcriptomics, NMF fails to incor...
Autores principales: | Townes, F. William, Engelhardt, Barbara E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9911348/ https://www.ncbi.nlm.nih.gov/pubmed/36587187 http://dx.doi.org/10.1038/s41592-022-01687-w |
Ejemplares similares
-
Alignment of spatial genomics data using deep Gaussian processes
por: Jones, Andrew, et al.
Publicado: (2023) -
Spatially Coherent Clustering Based on Orthogonal Nonnegative Matrix Factorization
por: Fernsel, Pascal
Publicado: (2021) -
Nonnegative matrices
por: Minc, Henryk
Publicado: (1988) -
Optimizing the design of spatial genomic studies
por: Jones, Andrew, et al.
Publicado: (2023) -
Nonnegative matrices and applications
por: Bapat, R B, et al.
Publicado: (1997)