Cargando…
Convolutional networks for supervised mining of molecular patterns within cellular context
Cryo-electron tomograms capture a wealth of structural information on the molecular constituents of cells and tissues. We present DeePiCt (deep picker in context), an open-source deep-learning framework for supervised segmentation and macromolecular complex localization in cryo-electron tomography....
Autores principales: | de Teresa-Trueba, Irene, Goetz, Sara K., Mattausch, Alexander, Stojanovska, Frosina, Zimmerli, Christian E., Toro-Nahuelpan, Mauricio, Cheng, Dorothy W. C., Tollervey, Fergus, Pape, Constantin, Beck, Martin, Diz-Muñoz, Alba, Kreshuk, Anna, Mahamid, Julia, Zaugg, Judith B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9911354/ https://www.ncbi.nlm.nih.gov/pubmed/36690741 http://dx.doi.org/10.1038/s41592-022-01746-2 |
Ejemplares similares
-
Tailoring cryo-electron microscopy grids by photo-micropatterning for in-cell structural studies
por: Toro-Nahuelpan, Mauricio, et al.
Publicado: (2020) -
Supervised descriptive pattern mining
por: Ventura, Sebastián, et al.
Publicado: (2018) -
Stress fibers are embedded in a contractile cortical network
por: Vignaud, Timothée, et al.
Publicado: (2021) -
Weakly-supervised convolutional neural networks for multimodal image registration
por: Hu, Yipeng, et al.
Publicado: (2018) -
Semi-Supervised Nests of Melanocytes Segmentation Method Using Convolutional Autoencoders
por: Kucharski, Dariusz, et al.
Publicado: (2020)