Cargando…

Lycopene: an antioxidant product reducing dithane toxicity in Allium cepa L.

The current study was undertaken to assess the attenuating potential of lycopene against Dithane toxicity in Allium cepa L. roots. A. cepa bulbs were arranged in 6 groups. The control group was treated with tap water while the other groups were treated with 215 mg/L lycopene, 430 mg/L lycopene, 500 ...

Descripción completa

Detalles Bibliográficos
Autores principales: Macar, Oksal, Kalefetoğlu Macar, Tuğçe, Çavuşoğlu, Kültiğin, Yalçın, Emine, Yapar, Kürşad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9911395/
https://www.ncbi.nlm.nih.gov/pubmed/36759547
http://dx.doi.org/10.1038/s41598-023-29481-4
Descripción
Sumario:The current study was undertaken to assess the attenuating potential of lycopene against Dithane toxicity in Allium cepa L. roots. A. cepa bulbs were arranged in 6 groups. The control group was treated with tap water while the other groups were treated with 215 mg/L lycopene, 430 mg/L lycopene, 500 mg/L Dithane, 500 mg/L Dithane + 215 mg/L lycopene and 500 mg/L Dithane + 430 mg/L lycopene, respectively. When the treatments were completed, growth inhibition, biochemical, genotoxicity and meristematic cell injury analyses were performed. Lycopene did not cause any toxic effect when applied alone. While rooting percentage, root elongation, weight gain and mitotic index (MI) decreased in response to Dithane exposure, the frequency of micronucleus (MN) and chromosomal abnormalities (CAs) in addition to malondialdehyde (MDA) level and the catalytic activities of superoxide dismutase (SOD) and catalase (CAT) increased. Dithane promoted fragment, sticky chromosome, vagrant chromosome, unequal distribution of chromatin, bridge, nucleus bud and reverse polarization formation in meristem cells. Dithane also provoked meristematic cell injuries, including indistinct appearance of vascular tissue, epidermis cell damage and flattened cell nucleus. Lycopene mitigated all damage types, depending on the lycopene dose applied with Dithane. Hence, the data analysis revealed that lycopene provides exceptional antioxidant protection against the fungicide Dithane, which has devastating toxic potential.