Cargando…
Learning spatiotemporal statistical shape models for non-linear dynamic anatomies
Numerous clinical investigations require understanding changes in anatomical shape over time, such as in dynamic organ cycle characterization or longitudinal analyses (e.g., for disease progression). Spatiotemporal statistical shape modeling (SSM) allows for quantifying and evaluating dynamic shape...
Autores principales: | Adams, Jadie, Khan, Nawazish, Morris, Alan, Elhabian, Shireen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9911425/ https://www.ncbi.nlm.nih.gov/pubmed/36777257 http://dx.doi.org/10.3389/fbioe.2023.1086234 |
Ejemplares similares
-
Statistical shape modeling of multi-organ anatomies with shared boundaries
por: Iyer, Krithika, et al.
Publicado: (2023) -
Statistical multi-level shape models for scalable modeling of multi-organ anatomies
por: Khan, Nawazish, et al.
Publicado: (2023) -
Multi-level multi-domain statistical shape model of the subtalar, talonavicular, and calcaneocuboid joints
por: Peterson, Andrew C., et al.
Publicado: (2022) -
Editorial: Statistical model-based computational biomechanics: applications in joints and internal organs
por: Borotikar, Bhushan, et al.
Publicado: (2023) -
Statistical Shape Modeling of Skeletal Anatomy for Sex Discrimination: Their Training Size, Sexual Dimorphism, and Asymmetry
por: Audenaert, E. A., et al.
Publicado: (2019)