Cargando…
Estimation of gait events and kinetic waveforms with wearable sensors and machine learning when running in an unconstrained environment
Wearable sensors and machine learning algorithms are becoming a viable alternative for biomechanical analysis outside of the laboratory. The purpose of this work was to estimate gait events from inertial measurement units (IMUs) and utilize machine learning for the estimation of ground reaction forc...
Autores principales: | Donahue, Seth R., Hahn, Michael E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9911774/ https://www.ncbi.nlm.nih.gov/pubmed/36759681 http://dx.doi.org/10.1038/s41598-023-29314-4 |
Ejemplares similares
-
Validation of Running Gait Event Detection Algorithms in a Semi-Uncontrolled Environment
por: Donahue, Seth R., et al.
Publicado: (2022) -
Estimation of ground reaction force waveforms during fixed pace running outside the laboratory
por: Donahue, Seth R., et al.
Publicado: (2023) -
A novel wearable device to deliver unconstrained, unpredictable slip perturbations during gait
por: Rasmussen, Corbin M., et al.
Publicado: (2019) -
Validation of Sensor-Based Food Intake Detection by Multicamera Video Observation in an Unconstrained Environment
por: Farooq, Muhammad, et al.
Publicado: (2019) -
Gait Analysis Using Wearable Sensors
por: Tao, Weijun, et al.
Publicado: (2012)