Cargando…
Generalizable machine learning approach for COVID-19 mortality risk prediction using on-admission clinical and laboratory features
We aimed to propose a mortality risk prediction model using on-admission clinical and laboratory predictors. We used a dataset of confirmed COVID-19 patients admitted to three general hospitals in Tehran. Clinical and laboratory values were gathered on admission. Six different machine learning model...
Autores principales: | Barough, Siavash Shirzadeh, Safavi-Naini, Seyed Amir Ahmad, Siavoshi, Fatemeh, Tamimi, Atena, Ilkhani, Saba, Akbari, Setareh, Ezzati, Sadaf, Hatamabadi, Hamidreza, Pourhoseingholi, Mohamad Amin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9911952/ https://www.ncbi.nlm.nih.gov/pubmed/36765157 http://dx.doi.org/10.1038/s41598-023-28943-z |
Ejemplares similares
-
On-admission and dynamic trend of laboratory profiles as prognostic biomarkers in COVID-19 inpatients
por: Siavoshi, Fatemeh, et al.
Publicado: (2023) -
The early impact of COVID-19 vaccination on deaths among elderly people in Iran
por: Safavi-Naini, Seyed Amir Ahmad, et al.
Publicado: (2022) -
Excess all-cause mortality and COVID-19 reported fatality in Iran (April 2013–September 2021): age and sex disaggregated time series analysis
por: Safavi-Naini, Seyed Amir Ahmad, et al.
Publicado: (2022) -
Mixture cure model for estimating short-term and long-term colorectal cancer survival
por: Amanpour, Farzaneh, et al.
Publicado: (2019) -
Epidemiology of COVID-19 in Tehran, Iran: A Cohort Study of Clinical Profile, Risk Factors, and Outcomes
por: Hatamabadi, Hamidreza, et al.
Publicado: (2022)