Cargando…
One-step hydrothermal preparation of Ta-doped ZnO nanorods for improving decolorization efficiency under visible light
In this work, Ta-doped ZnO (Ta-ZnO) nanomaterials were synthesized by the hydrothermal method at different temperatures (110, 150, and 170 °C) for the photodegradation of methylene blue (MB) under visible light. Ta doping significantly affects the crystal defects, optical properties, and MB photocat...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912144/ https://www.ncbi.nlm.nih.gov/pubmed/36777945 http://dx.doi.org/10.1039/d2ra07655a |
_version_ | 1784885143714922496 |
---|---|
author | Ha Luu, Thi Viet Dao, Ngoc Nhiem Le Pham, Hoang Ai Nguyen, Quang Bac Nguyen, Van Cuong Dang, Phuc Huu |
author_facet | Ha Luu, Thi Viet Dao, Ngoc Nhiem Le Pham, Hoang Ai Nguyen, Quang Bac Nguyen, Van Cuong Dang, Phuc Huu |
author_sort | Ha Luu, Thi Viet |
collection | PubMed |
description | In this work, Ta-doped ZnO (Ta-ZnO) nanomaterials were synthesized by the hydrothermal method at different temperatures (110, 150, and 170 °C) for the photodegradation of methylene blue (MB) under visible light. Ta doping significantly affects the crystal defects, optical properties, and MB photocatalytic efficiency of ZnO materials. The optical absorption edge of Ta-ZnO 150 was redshifted compared to undoped ZnO, correlating to bandgap narrowing (E(gTa–ZnO) = 2.92 eV; E(gZnO) = 3.07 eV), implying that Ta doped ZnO is capable of absorbing visible light. Besides, Ta-doping was the reason for enhanced blue light emission in the photoluminescence spectrum, which is related to the oxygen defect V(0)(O). It is also observed in the XPS spectra, where the percentage of oxygen in the oxygen-deficient regions (O(531.5) eV) of Ta-ZnO150 is higher than that of ZnO150. It is an important factor in enhancing ZnO's photocatalytic efficiency. The MB degradation efficiency of Ta-doped ZnO reached the highest for Ta-ZnO 150 and was 2.5 times higher than ZnO under a halogen lamp (HL). Notably, the influence of hydrothermal temperature on the structural, morphological, and photoelectrochemical properties was discussed in detail. As a result, the optimal hydrothermal temperature for synthesizing the nanorod is 150 °C. Furthermore, photocatalytic experiments were also performed under simulated sunlight and natural sunlight. The nature of the photo-oxidative degradation of MB was also investigated. |
format | Online Article Text |
id | pubmed-9912144 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-99121442023-02-11 One-step hydrothermal preparation of Ta-doped ZnO nanorods for improving decolorization efficiency under visible light Ha Luu, Thi Viet Dao, Ngoc Nhiem Le Pham, Hoang Ai Nguyen, Quang Bac Nguyen, Van Cuong Dang, Phuc Huu RSC Adv Chemistry In this work, Ta-doped ZnO (Ta-ZnO) nanomaterials were synthesized by the hydrothermal method at different temperatures (110, 150, and 170 °C) for the photodegradation of methylene blue (MB) under visible light. Ta doping significantly affects the crystal defects, optical properties, and MB photocatalytic efficiency of ZnO materials. The optical absorption edge of Ta-ZnO 150 was redshifted compared to undoped ZnO, correlating to bandgap narrowing (E(gTa–ZnO) = 2.92 eV; E(gZnO) = 3.07 eV), implying that Ta doped ZnO is capable of absorbing visible light. Besides, Ta-doping was the reason for enhanced blue light emission in the photoluminescence spectrum, which is related to the oxygen defect V(0)(O). It is also observed in the XPS spectra, where the percentage of oxygen in the oxygen-deficient regions (O(531.5) eV) of Ta-ZnO150 is higher than that of ZnO150. It is an important factor in enhancing ZnO's photocatalytic efficiency. The MB degradation efficiency of Ta-doped ZnO reached the highest for Ta-ZnO 150 and was 2.5 times higher than ZnO under a halogen lamp (HL). Notably, the influence of hydrothermal temperature on the structural, morphological, and photoelectrochemical properties was discussed in detail. As a result, the optimal hydrothermal temperature for synthesizing the nanorod is 150 °C. Furthermore, photocatalytic experiments were also performed under simulated sunlight and natural sunlight. The nature of the photo-oxidative degradation of MB was also investigated. The Royal Society of Chemistry 2023-02-10 /pmc/articles/PMC9912144/ /pubmed/36777945 http://dx.doi.org/10.1039/d2ra07655a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Ha Luu, Thi Viet Dao, Ngoc Nhiem Le Pham, Hoang Ai Nguyen, Quang Bac Nguyen, Van Cuong Dang, Phuc Huu One-step hydrothermal preparation of Ta-doped ZnO nanorods for improving decolorization efficiency under visible light |
title | One-step hydrothermal preparation of Ta-doped ZnO nanorods for improving decolorization efficiency under visible light |
title_full | One-step hydrothermal preparation of Ta-doped ZnO nanorods for improving decolorization efficiency under visible light |
title_fullStr | One-step hydrothermal preparation of Ta-doped ZnO nanorods for improving decolorization efficiency under visible light |
title_full_unstemmed | One-step hydrothermal preparation of Ta-doped ZnO nanorods for improving decolorization efficiency under visible light |
title_short | One-step hydrothermal preparation of Ta-doped ZnO nanorods for improving decolorization efficiency under visible light |
title_sort | one-step hydrothermal preparation of ta-doped zno nanorods for improving decolorization efficiency under visible light |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912144/ https://www.ncbi.nlm.nih.gov/pubmed/36777945 http://dx.doi.org/10.1039/d2ra07655a |
work_keys_str_mv | AT haluuthiviet onestephydrothermalpreparationoftadopedznonanorodsforimprovingdecolorizationefficiencyundervisiblelight AT daongocnhiem onestephydrothermalpreparationoftadopedznonanorodsforimprovingdecolorizationefficiencyundervisiblelight AT lephamhoangai onestephydrothermalpreparationoftadopedznonanorodsforimprovingdecolorizationefficiencyundervisiblelight AT nguyenquangbac onestephydrothermalpreparationoftadopedznonanorodsforimprovingdecolorizationefficiencyundervisiblelight AT nguyenvancuong onestephydrothermalpreparationoftadopedznonanorodsforimprovingdecolorizationefficiencyundervisiblelight AT dangphuchuu onestephydrothermalpreparationoftadopedznonanorodsforimprovingdecolorizationefficiencyundervisiblelight |