Cargando…
Grayscale Image Statistical Attributes Effectively Distinguish the Severity of Lung Abnormalities in CT Scan Slices of COVID-19 Patients
Grayscale statistical attributes analysed for 513 extract images taken from pulmonary computed tomography (CT) scan slices of 57 individuals (49 confirmed COVID-19 positive; eight confirmed COVID-19 negative) are able to accurately predict a visual score (VS from 0 to 4) used by a clinician to asses...
Autores principales: | Ghashghaei, Sara, Wood, David A., Sadatshojaei, Erfan, Jalilpoor, Mansooreh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912234/ https://www.ncbi.nlm.nih.gov/pubmed/36789248 http://dx.doi.org/10.1007/s42979-022-01642-8 |
Ejemplares similares
-
Grayscale image statistics of COVID‐19 patient CT scans characterize lung condition with machine and deep learning
por: Ghashghaei, Sara, et al.
Publicado: (2022) -
Systematic optimization of ultrasound grayscale imaging presets and its application in abdominal scanning
por: Long, Zaiyang, et al.
Publicado: (2020) -
Efficient coding of natural scene statistics predicts discrimination thresholds for grayscale textures
por: Tesileanu, Tiberiu, et al.
Publicado: (2020) -
Colorizing Grayscale CT images of human lungs using deep learning methods
por: Wang, Yuewei, et al.
Publicado: (2022) -
Routine 64-slice spiral CT scanning in diagnosis of Thoracic trauma
por: Fanshan, MENG, et al.
Publicado: (2012)