Cargando…
Modeling CRISPR-Cas13d on-target and off-target effects using machine learning approaches
A major challenge in the application of the CRISPR-Cas13d system is to accurately predict its guide-dependent on-target and off-target effect. Here, we perform CRISPR-Cas13d proliferation screens and design a deep learning model, named DeepCas13, to predict the on-target activity from guide sequence...
Autores principales: | Cheng, Xiaolong, Li, Zexu, Shan, Ruocheng, Li, Zihan, Wang, Shengnan, Zhao, Wenchang, Zhang, Han, Chao, Lumen, Peng, Jian, Fei, Teng, Li, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912244/ https://www.ncbi.nlm.nih.gov/pubmed/36765063 http://dx.doi.org/10.1038/s41467-023-36316-3 |
Ejemplares similares
-
A chemical-enhanced system for CRISPR-Based nucleic acid detection
por: Li, Zihan, et al.
Publicado: (2021) -
Off-target effects in CRISPR/Cas9 gene editing
por: Guo, Congting, et al.
Publicado: (2023) -
Off-target Effects in CRISPR/Cas9-mediated Genome Engineering
por: Zhang, Xiao-Hui, et al.
Publicado: (2015) -
CRISPRon/off: CRISPR/Cas9 on- and off-target gRNA design
por: Anthon, Christian, et al.
Publicado: (2022) -
Strategies to Increase On-Target and Reduce Off-Target Effects of the CRISPR/Cas9 System in Plants
por: Hajiahmadi, Zahra, et al.
Publicado: (2019)