Cargando…
Extraction and Characterization of Fiber and Cellulose from Ethiopian Linseed Straw: Determination of Retting Period and Optimization of Multi-Step Alkaline Peroxide Process
Flax is a commercial crop grown in many parts of the world both for its seeds and for its fibers. The seed-based flax variety (linseed) is considered less for its fiber after the seed is extracted. In this study, linseed straw was utilized and processed to extract fiber and cellulose through optimiz...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912263/ https://www.ncbi.nlm.nih.gov/pubmed/36679349 http://dx.doi.org/10.3390/polym15020469 |
Sumario: | Flax is a commercial crop grown in many parts of the world both for its seeds and for its fibers. The seed-based flax variety (linseed) is considered less for its fiber after the seed is extracted. In this study, linseed straw was utilized and processed to extract fiber and cellulose through optimization of retting time and a multi-step alkaline peroxide extraction process using the Taguchi design of experiment (DOE). Effects of retting duration on fiber properties as well as effects of solvent concentration, reaction temperature, and time on removal of non-cellulosic fiber components were studied using the gravimetric technique, Fourier transform infrared (FTIR) spectroscopy and thermal studies. Based on these findings, retting for 216 h at room temperature should offer adequate retting efficiency and fiber characteristics; 70% cellulose yield was extracted successfully from linseed straw fiber using 75% ethanol–toluene at 98 °C for 4 h, 6% NaOH at 75 °C for 30 min, and 6% H(2)O(2) at 90 °C for 120 min. |
---|