Cargando…
Animal model-based simulation training for three emergent and urgent operations of penetrating thoracic injuries
PURPOSE: To develop animal models of penetrating thoracic injuries and to observe the effects of the animal model-based training on improving the trainees’ performance for emergent and urgent thoracic surgeries. METHODS: With a homemade machine, animal models of lung injuries and penetrating heart i...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9912295/ https://www.ncbi.nlm.nih.gov/pubmed/36008213 http://dx.doi.org/10.1016/j.cjtee.2022.07.004 |
Sumario: | PURPOSE: To develop animal models of penetrating thoracic injuries and to observe the effects of the animal model-based training on improving the trainees’ performance for emergent and urgent thoracic surgeries. METHODS: With a homemade machine, animal models of lung injuries and penetrating heart injuries were produced in porcine and used for training of chest tube drainage, urgent sternotomy, and emergent thoracotomy. Coefficient of variation of abbreviated injury scale and blood loss was calculated to judge the reproducibility of animal models. Five operation teams from basic-level hospitals (group A) and five operation teams from level III hospitals (group B) were included to be trained and tested. Testing standards for the operations were established after thorough literature review, and expert questionnaires were employed to evaluate the scientificity and feasibility of the testing standards. Tests were carried out after the training. Pre- and post-training performances were compared. Post-training survey using 7-point Likert scale was taken to evaluate the feelings of the trainees to these training approaches. RESULTS: Animal models of the three kinds of penetrating chest injuries were successfully established and the coefficient of variation of abbreviated injury scale and blood loss were all less than 25%. After literature review, testing standards were established, and expert questionnaire results showed that the scientific score was 7.30 ± 1.49, and the feasibility score was 7.50 ± 0.89. Post-training performance was significantly higher in both group A and group B than pre-training performance. Post-training survey showed that all the trainees felt confident in applying the operations and were generally agreed that the training procedure were very helpful in improving operation skills for thoracic penetrating injury. CONCLUSIONS: Animal model-based simulation training established in the current study could improve the trainees’ performance for emergent and urgent thoracic surgeries, especially of the surgical teams from basic-level hospitals. |
---|